Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration

Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2019-04, Vol.15 (4), p.631-651
Hauptverfasser: Rusmini, Paola, Cortese, Katia, Crippa, Valeria, Cristofani, Riccardo, Cicardi, Maria Elena, Ferrari, Veronica, Vezzoli, Giulia, Tedesco, Barbara, Meroni, Marco, Messi, Elio, Piccolella, Margherita, Galbiati, Mariarita, Garrè, Massimiliano, Morelli, Elena, Vaccari, Thomas, Poletti, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 4
container_start_page 631
container_title Autophagy
container_volume 15
creator Rusmini, Paola
Cortese, Katia
Crippa, Valeria
Cristofani, Riccardo
Cicardi, Maria Elena
Ferrari, Veronica
Vezzoli, Giulia
Tedesco, Barbara
Meroni, Marco
Messi, Elio
Piccolella, Margherita
Galbiati, Mariarita
Garrè, Massimiliano
Morelli, Elena
Vaccari, Thomas
Poletti, Angelo
description Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4ʹ,6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord
doi_str_mv 10.1080/15548627.2018.1535292
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123729108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123729108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-d124f422cb50c13099ca4540676af6c72e8a0105f94333bef3168ce257c824b83</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhlcIREvhJ4D2yGWDP3e9FwRULSBV4hLO1sQ7Toy8drB3g_Lv6zRpRC89eTR-3pmRnqp6T8mCEkU-USmFalm3YISqBZVcsp69qC4P_Ua1XL4816y7qN7k_IcQ3qqeva4uOOFcyp5eVutlwg34mLF2YZgN5hrmKW43sN7XOwe13-eY4wi-GXFwMOFQL29vvtVgJreDycVQgvUYB_S5jrZUUww4p9IfcI0B0wP0tnplwWd8d3qvqt-3N8vrH83dr-8_r7_eNUb0YmoGyoQVjJmVJIZy0vcGhBSk7VqwrekYKiCUSNsLzvkKLaetMshkZxQTK8Wvqs_Hudt5VQ42GKYEXm-TGyHtdQSnn_4Et9HruNOtZK2irAz4eBqQ4t8Z86RHlw16DwHjnDUrTMf64qCg8oiaFHNOaM9rKNEHSfpRkj5I0idJJffh_xvPqUcrBfhyBFywMY3wLyY_6An2PiabIBiXNX9-xz072qMx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123729108</pqid></control><display><type>article</type><title>Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rusmini, Paola ; Cortese, Katia ; Crippa, Valeria ; Cristofani, Riccardo ; Cicardi, Maria Elena ; Ferrari, Veronica ; Vezzoli, Giulia ; Tedesco, Barbara ; Meroni, Marco ; Messi, Elio ; Piccolella, Margherita ; Galbiati, Mariarita ; Garrè, Massimiliano ; Morelli, Elena ; Vaccari, Thomas ; Poletti, Angelo</creator><creatorcontrib>Rusmini, Paola ; Cortese, Katia ; Crippa, Valeria ; Cristofani, Riccardo ; Cicardi, Maria Elena ; Ferrari, Veronica ; Vezzoli, Giulia ; Tedesco, Barbara ; Meroni, Marco ; Messi, Elio ; Piccolella, Margherita ; Galbiati, Mariarita ; Garrè, Massimiliano ; Morelli, Elena ; Vaccari, Thomas ; Poletti, Angelo</creatorcontrib><description>Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4ʹ,6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord 34; PBS: phosphate-buffered saline; PD: Parkinson disease; polyQ: polyglutamine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; RT-qPCR: real-time quantitative polymerase chain reaction; SBMA: spinal and bulbar muscular atrophy; SCAs: spinocerebellar ataxias; siRNA: small interfering RNA; SLC2A8: solute carrier family 2, (facilitated glucose transporter), member 8; smNPCs: small molecules neural progenitors cells; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STUB1: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPP1: tripeptidyl peptidase I; TREH: trehalase (brush-border membrane glycoprotein); WB: western blotting; ZKSCAN3: zinc finger with KRAB and SCAN domains 3</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2018.1535292</identifier><identifier>PMID: 30335591</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - drug therapy ; Amyotrophic Lateral Sclerosis - metabolism ; Animals ; Autophagosomes - drug effects ; Autophagosomes - enzymology ; Autophagosomes - metabolism ; autophagy ; Autophagy - drug effects ; Autophagy - genetics ; Autophagy-Related Proteins - genetics ; Autophagy-Related Proteins - metabolism ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Bulbo-Spinal Atrophy, X-Linked - drug therapy ; Bulbo-Spinal Atrophy, X-Linked - metabolism ; calcineurin ; Calcineurin - genetics ; Calcineurin - metabolism ; Calcium - metabolism ; Cell Differentiation ; Cell Nucleus - metabolism ; Down-Regulation - genetics ; galectin-3 ; Humans ; Induced Pluripotent Stem Cells - enzymology ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - pathology ; Induced Pluripotent Stem Cells - ultrastructure ; lactulose ; lysosomes ; Lysosomes - drug effects ; Lysosomes - enzymology ; Lysosomes - metabolism ; Lysosomes - ultrastructure ; melibiose ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Microtubule-Associated Proteins - metabolism ; motoneuron diseases ; Motor Neurons - enzymology ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Motor Neurons - ultrastructure ; neurodegeneration ; Neuroprotection - drug effects ; Neuroprotection - genetics ; protein quality control ; Research Paper - Basic Science ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Sequestosome-1 Protein - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics ; spinal and bulbar muscular atrophy ; TFEB ; trehalose ; Trehalose - analogs &amp; derivatives ; Trehalose - pharmacology ; Unfolded Protein Response - genetics</subject><ispartof>Autophagy, 2019-04, Vol.15 (4), p.631-651</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-d124f422cb50c13099ca4540676af6c72e8a0105f94333bef3168ce257c824b83</citedby><cites>FETCH-LOGICAL-c494t-d124f422cb50c13099ca4540676af6c72e8a0105f94333bef3168ce257c824b83</cites><orcidid>0000-0003-2719-846X ; 0000-0002-6231-7105 ; 0000-0001-6682-4799 ; 0000-0003-3250-5591 ; 0000-0002-8883-0468 ; 0000-0002-7077-3696 ; 0000-0003-2514-9445 ; 0000-0002-9515-1463 ; 0000-0002-3058-5711 ; 0000-0001-9989-0733 ; 0000-0001-9490-303X ; 0000-0001-9218-8933 ; 0000-0003-2032-4179 ; 0000-0002-5130-1116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526812/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526812/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30335591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rusmini, Paola</creatorcontrib><creatorcontrib>Cortese, Katia</creatorcontrib><creatorcontrib>Crippa, Valeria</creatorcontrib><creatorcontrib>Cristofani, Riccardo</creatorcontrib><creatorcontrib>Cicardi, Maria Elena</creatorcontrib><creatorcontrib>Ferrari, Veronica</creatorcontrib><creatorcontrib>Vezzoli, Giulia</creatorcontrib><creatorcontrib>Tedesco, Barbara</creatorcontrib><creatorcontrib>Meroni, Marco</creatorcontrib><creatorcontrib>Messi, Elio</creatorcontrib><creatorcontrib>Piccolella, Margherita</creatorcontrib><creatorcontrib>Galbiati, Mariarita</creatorcontrib><creatorcontrib>Garrè, Massimiliano</creatorcontrib><creatorcontrib>Morelli, Elena</creatorcontrib><creatorcontrib>Vaccari, Thomas</creatorcontrib><creatorcontrib>Poletti, Angelo</creatorcontrib><title>Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4ʹ,6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord 34; PBS: phosphate-buffered saline; PD: Parkinson disease; polyQ: polyglutamine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; RT-qPCR: real-time quantitative polymerase chain reaction; SBMA: spinal and bulbar muscular atrophy; SCAs: spinocerebellar ataxias; siRNA: small interfering RNA; SLC2A8: solute carrier family 2, (facilitated glucose transporter), member 8; smNPCs: small molecules neural progenitors cells; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STUB1: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPP1: tripeptidyl peptidase I; TREH: trehalase (brush-border membrane glycoprotein); WB: western blotting; ZKSCAN3: zinc finger with KRAB and SCAN domains 3</description><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - drug therapy</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Animals</subject><subject>Autophagosomes - drug effects</subject><subject>Autophagosomes - enzymology</subject><subject>Autophagosomes - metabolism</subject><subject>autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - genetics</subject><subject>Autophagy-Related Proteins - genetics</subject><subject>Autophagy-Related Proteins - metabolism</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Bulbo-Spinal Atrophy, X-Linked - drug therapy</subject><subject>Bulbo-Spinal Atrophy, X-Linked - metabolism</subject><subject>calcineurin</subject><subject>Calcineurin - genetics</subject><subject>Calcineurin - metabolism</subject><subject>Calcium - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Nucleus - metabolism</subject><subject>Down-Regulation - genetics</subject><subject>galectin-3</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - enzymology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>Induced Pluripotent Stem Cells - ultrastructure</subject><subject>lactulose</subject><subject>lysosomes</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - enzymology</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - ultrastructure</subject><subject>melibiose</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>motoneuron diseases</subject><subject>Motor Neurons - enzymology</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Motor Neurons - ultrastructure</subject><subject>neurodegeneration</subject><subject>Neuroprotection - drug effects</subject><subject>Neuroprotection - genetics</subject><subject>protein quality control</subject><subject>Research Paper - Basic Science</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sequestosome-1 Protein - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>spinal and bulbar muscular atrophy</subject><subject>TFEB</subject><subject>trehalose</subject><subject>Trehalose - analogs &amp; derivatives</subject><subject>Trehalose - pharmacology</subject><subject>Unfolded Protein Response - genetics</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhlcIREvhJ4D2yGWDP3e9FwRULSBV4hLO1sQ7Toy8drB3g_Lv6zRpRC89eTR-3pmRnqp6T8mCEkU-USmFalm3YISqBZVcsp69qC4P_Ua1XL4816y7qN7k_IcQ3qqeva4uOOFcyp5eVutlwg34mLF2YZgN5hrmKW43sN7XOwe13-eY4wi-GXFwMOFQL29vvtVgJreDycVQgvUYB_S5jrZUUww4p9IfcI0B0wP0tnplwWd8d3qvqt-3N8vrH83dr-8_r7_eNUb0YmoGyoQVjJmVJIZy0vcGhBSk7VqwrekYKiCUSNsLzvkKLaetMshkZxQTK8Wvqs_Hudt5VQ42GKYEXm-TGyHtdQSnn_4Et9HruNOtZK2irAz4eBqQ4t8Z86RHlw16DwHjnDUrTMf64qCg8oiaFHNOaM9rKNEHSfpRkj5I0idJJffh_xvPqUcrBfhyBFywMY3wLyY_6An2PiabIBiXNX9-xz072qMx</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Rusmini, Paola</creator><creator>Cortese, Katia</creator><creator>Crippa, Valeria</creator><creator>Cristofani, Riccardo</creator><creator>Cicardi, Maria Elena</creator><creator>Ferrari, Veronica</creator><creator>Vezzoli, Giulia</creator><creator>Tedesco, Barbara</creator><creator>Meroni, Marco</creator><creator>Messi, Elio</creator><creator>Piccolella, Margherita</creator><creator>Galbiati, Mariarita</creator><creator>Garrè, Massimiliano</creator><creator>Morelli, Elena</creator><creator>Vaccari, Thomas</creator><creator>Poletti, Angelo</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2719-846X</orcidid><orcidid>https://orcid.org/0000-0002-6231-7105</orcidid><orcidid>https://orcid.org/0000-0001-6682-4799</orcidid><orcidid>https://orcid.org/0000-0003-3250-5591</orcidid><orcidid>https://orcid.org/0000-0002-8883-0468</orcidid><orcidid>https://orcid.org/0000-0002-7077-3696</orcidid><orcidid>https://orcid.org/0000-0003-2514-9445</orcidid><orcidid>https://orcid.org/0000-0002-9515-1463</orcidid><orcidid>https://orcid.org/0000-0002-3058-5711</orcidid><orcidid>https://orcid.org/0000-0001-9989-0733</orcidid><orcidid>https://orcid.org/0000-0001-9490-303X</orcidid><orcidid>https://orcid.org/0000-0001-9218-8933</orcidid><orcidid>https://orcid.org/0000-0003-2032-4179</orcidid><orcidid>https://orcid.org/0000-0002-5130-1116</orcidid></search><sort><creationdate>20190403</creationdate><title>Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration</title><author>Rusmini, Paola ; Cortese, Katia ; Crippa, Valeria ; Cristofani, Riccardo ; Cicardi, Maria Elena ; Ferrari, Veronica ; Vezzoli, Giulia ; Tedesco, Barbara ; Meroni, Marco ; Messi, Elio ; Piccolella, Margherita ; Galbiati, Mariarita ; Garrè, Massimiliano ; Morelli, Elena ; Vaccari, Thomas ; Poletti, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-d124f422cb50c13099ca4540676af6c72e8a0105f94333bef3168ce257c824b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - drug therapy</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Animals</topic><topic>Autophagosomes - drug effects</topic><topic>Autophagosomes - enzymology</topic><topic>Autophagosomes - metabolism</topic><topic>autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - genetics</topic><topic>Autophagy-Related Proteins - genetics</topic><topic>Autophagy-Related Proteins - metabolism</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Bulbo-Spinal Atrophy, X-Linked - drug therapy</topic><topic>Bulbo-Spinal Atrophy, X-Linked - metabolism</topic><topic>calcineurin</topic><topic>Calcineurin - genetics</topic><topic>Calcineurin - metabolism</topic><topic>Calcium - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Nucleus - metabolism</topic><topic>Down-Regulation - genetics</topic><topic>galectin-3</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - enzymology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>Induced Pluripotent Stem Cells - ultrastructure</topic><topic>lactulose</topic><topic>lysosomes</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - enzymology</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - ultrastructure</topic><topic>melibiose</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>motoneuron diseases</topic><topic>Motor Neurons - enzymology</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Motor Neurons - ultrastructure</topic><topic>neurodegeneration</topic><topic>Neuroprotection - drug effects</topic><topic>Neuroprotection - genetics</topic><topic>protein quality control</topic><topic>Research Paper - Basic Science</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sequestosome-1 Protein - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>spinal and bulbar muscular atrophy</topic><topic>TFEB</topic><topic>trehalose</topic><topic>Trehalose - analogs &amp; derivatives</topic><topic>Trehalose - pharmacology</topic><topic>Unfolded Protein Response - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusmini, Paola</creatorcontrib><creatorcontrib>Cortese, Katia</creatorcontrib><creatorcontrib>Crippa, Valeria</creatorcontrib><creatorcontrib>Cristofani, Riccardo</creatorcontrib><creatorcontrib>Cicardi, Maria Elena</creatorcontrib><creatorcontrib>Ferrari, Veronica</creatorcontrib><creatorcontrib>Vezzoli, Giulia</creatorcontrib><creatorcontrib>Tedesco, Barbara</creatorcontrib><creatorcontrib>Meroni, Marco</creatorcontrib><creatorcontrib>Messi, Elio</creatorcontrib><creatorcontrib>Piccolella, Margherita</creatorcontrib><creatorcontrib>Galbiati, Mariarita</creatorcontrib><creatorcontrib>Garrè, Massimiliano</creatorcontrib><creatorcontrib>Morelli, Elena</creatorcontrib><creatorcontrib>Vaccari, Thomas</creatorcontrib><creatorcontrib>Poletti, Angelo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusmini, Paola</au><au>Cortese, Katia</au><au>Crippa, Valeria</au><au>Cristofani, Riccardo</au><au>Cicardi, Maria Elena</au><au>Ferrari, Veronica</au><au>Vezzoli, Giulia</au><au>Tedesco, Barbara</au><au>Meroni, Marco</au><au>Messi, Elio</au><au>Piccolella, Margherita</au><au>Galbiati, Mariarita</au><au>Garrè, Massimiliano</au><au>Morelli, Elena</au><au>Vaccari, Thomas</au><au>Poletti, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>631</spage><epage>651</epage><pages>631-651</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4ʹ,6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord 34; PBS: phosphate-buffered saline; PD: Parkinson disease; polyQ: polyglutamine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; RT-qPCR: real-time quantitative polymerase chain reaction; SBMA: spinal and bulbar muscular atrophy; SCAs: spinocerebellar ataxias; siRNA: small interfering RNA; SLC2A8: solute carrier family 2, (facilitated glucose transporter), member 8; smNPCs: small molecules neural progenitors cells; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STUB1: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPP1: tripeptidyl peptidase I; TREH: trehalase (brush-border membrane glycoprotein); WB: western blotting; ZKSCAN3: zinc finger with KRAB and SCAN domains 3</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>30335591</pmid><doi>10.1080/15548627.2018.1535292</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2719-846X</orcidid><orcidid>https://orcid.org/0000-0002-6231-7105</orcidid><orcidid>https://orcid.org/0000-0001-6682-4799</orcidid><orcidid>https://orcid.org/0000-0003-3250-5591</orcidid><orcidid>https://orcid.org/0000-0002-8883-0468</orcidid><orcidid>https://orcid.org/0000-0002-7077-3696</orcidid><orcidid>https://orcid.org/0000-0003-2514-9445</orcidid><orcidid>https://orcid.org/0000-0002-9515-1463</orcidid><orcidid>https://orcid.org/0000-0002-3058-5711</orcidid><orcidid>https://orcid.org/0000-0001-9989-0733</orcidid><orcidid>https://orcid.org/0000-0001-9490-303X</orcidid><orcidid>https://orcid.org/0000-0001-9218-8933</orcidid><orcidid>https://orcid.org/0000-0003-2032-4179</orcidid><orcidid>https://orcid.org/0000-0002-5130-1116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2019-04, Vol.15 (4), p.631-651
issn 1554-8627
1554-8635
language eng
recordid cdi_proquest_miscellaneous_2123729108
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - drug therapy
Amyotrophic Lateral Sclerosis - metabolism
Animals
Autophagosomes - drug effects
Autophagosomes - enzymology
Autophagosomes - metabolism
autophagy
Autophagy - drug effects
Autophagy - genetics
Autophagy-Related Proteins - genetics
Autophagy-Related Proteins - metabolism
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Bulbo-Spinal Atrophy, X-Linked - drug therapy
Bulbo-Spinal Atrophy, X-Linked - metabolism
calcineurin
Calcineurin - genetics
Calcineurin - metabolism
Calcium - metabolism
Cell Differentiation
Cell Nucleus - metabolism
Down-Regulation - genetics
galectin-3
Humans
Induced Pluripotent Stem Cells - enzymology
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
Induced Pluripotent Stem Cells - ultrastructure
lactulose
lysosomes
Lysosomes - drug effects
Lysosomes - enzymology
Lysosomes - metabolism
Lysosomes - ultrastructure
melibiose
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Microtubule-Associated Proteins - metabolism
motoneuron diseases
Motor Neurons - enzymology
Motor Neurons - metabolism
Motor Neurons - pathology
Motor Neurons - ultrastructure
neurodegeneration
Neuroprotection - drug effects
Neuroprotection - genetics
protein quality control
Research Paper - Basic Science
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Sequestosome-1 Protein - metabolism
Signal Transduction - drug effects
Signal Transduction - genetics
spinal and bulbar muscular atrophy
TFEB
trehalose
Trehalose - analogs & derivatives
Trehalose - pharmacology
Unfolded Protein Response - genetics
title Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trehalose%20induces%20autophagy%20via%20lysosomal-mediated%20TFEB%20activation%20in%20models%20of%20motoneuron%20degeneration&rft.jtitle=Autophagy&rft.au=Rusmini,%20Paola&rft.date=2019-04-03&rft.volume=15&rft.issue=4&rft.spage=631&rft.epage=651&rft.pages=631-651&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2018.1535292&rft_dat=%3Cproquest_cross%3E2123729108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123729108&rft_id=info:pmid/30335591&rfr_iscdi=true