Neuregulin‐1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension

Summary We have previously shown that treatment with recombinant human neuregulin‐1 (rhNRG‐1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)‐induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental pharmacology & physiology 2019-03, Vol.46 (3), p.255-265
Hauptverfasser: Adão, Rui, Mendes‐Ferreira, Pedro, Maia‐Rocha, Carolina, Santos‐Ribeiro, Diana, Rodrigues, Patrícia Gonçalves, Vidal‐Meireles, André, Monteiro‐Pinto, Cláudia, Pimentel, Luís D., Falcão‐Pires, Inês, De Keulenaer, Gilles W., Leite‐Moreira, Adelino F., Brás‐Silva, Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 3
container_start_page 255
container_title Clinical and experimental pharmacology & physiology
container_volume 46
creator Adão, Rui
Mendes‐Ferreira, Pedro
Maia‐Rocha, Carolina
Santos‐Ribeiro, Diana
Rodrigues, Patrícia Gonçalves
Vidal‐Meireles, André
Monteiro‐Pinto, Cláudia
Pimentel, Luís D.
Falcão‐Pires, Inês
De Keulenaer, Gilles W.
Leite‐Moreira, Adelino F.
Brás‐Silva, Carmen
description Summary We have previously shown that treatment with recombinant human neuregulin‐1 (rhNRG‐1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)‐induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG‐1 treatment showed direct myocardial anti‐remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG‐1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG‐1 treatment on ventricular passive stiffness in RV and LV samples from MCT‐induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling‐associated genes and calcium handling proteins. Chronic rhNRG‐1 treatment decreased passive tension development in RV and LV isolated from animals with MCT‐induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG‐1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB‐induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac‐specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG‐1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.
doi_str_mv 10.1111/1440-1681.13043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123717810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123717810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-109b71cb2868ae01062644b45eb35b3d777a98923ac3cec06fbfb9bae037c70c3</originalsourceid><addsrcrecordid>eNqFkbFuFDEQhi0EIpdAnQ5ZSpNmk_HO7nq3jE4JRIqAAmrL9s0mjnzew14HruMReEaeBB-XpKDBkmVp9PnTzD-MHQs4E-Wci6aBSnS9OBMIDb5gi-fKS7YAhLYSvYQDdpjSPQC00OFrdoCAONQSF2z8SDnSbfYu_P75S3A9zxSyninx6G7vZv5AYY7OZq8jXzmd5sk7y9PsxjFQStwFTj82FN26gNrzTfbrKei45XfbUi625Kbwhr0atU_09vE9Yl-vLr8sP1Q3n95fLy9uKtvggJWAwUhhTd13vSYQ0NVd05imJYOtwZWUUg_9UKO2aMlCN5rRDKagKK0Ei0fsdO_dxOlbpjSrtUuWvNeBppxULWqUQvYCCnryD3o_5RhKd4XqUeyuLNT5nrJxSinSqDZl1DKeEqB2K1C7wNUucPV3BeXHu0dvNmtaPfNPmReg3QPfnaft_3xqefl5L_4D4dGSeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183118317</pqid></control><display><type>article</type><title>Neuregulin‐1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Adão, Rui ; Mendes‐Ferreira, Pedro ; Maia‐Rocha, Carolina ; Santos‐Ribeiro, Diana ; Rodrigues, Patrícia Gonçalves ; Vidal‐Meireles, André ; Monteiro‐Pinto, Cláudia ; Pimentel, Luís D. ; Falcão‐Pires, Inês ; De Keulenaer, Gilles W. ; Leite‐Moreira, Adelino F. ; Brás‐Silva, Carmen</creator><creatorcontrib>Adão, Rui ; Mendes‐Ferreira, Pedro ; Maia‐Rocha, Carolina ; Santos‐Ribeiro, Diana ; Rodrigues, Patrícia Gonçalves ; Vidal‐Meireles, André ; Monteiro‐Pinto, Cláudia ; Pimentel, Luís D. ; Falcão‐Pires, Inês ; De Keulenaer, Gilles W. ; Leite‐Moreira, Adelino F. ; Brás‐Silva, Carmen</creatorcontrib><description>Summary We have previously shown that treatment with recombinant human neuregulin‐1 (rhNRG‐1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)‐induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG‐1 treatment showed direct myocardial anti‐remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG‐1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG‐1 treatment on ventricular passive stiffness in RV and LV samples from MCT‐induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling‐associated genes and calcium handling proteins. Chronic rhNRG‐1 treatment decreased passive tension development in RV and LV isolated from animals with MCT‐induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG‐1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB‐induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac‐specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG‐1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13043</identifier><identifier>PMID: 30339273</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Animals ; Attenuation ; Banding ; Calcium ; Calcium Signaling - drug effects ; Cardiomyocytes ; Diastole - physiology ; diastolic function ; diastolic stiffness ; Gene expression ; Gene Expression Regulation - drug effects ; Heart ; Humans ; Hypertension ; Hypertension, Pulmonary - pathology ; Hypertension, Pulmonary - physiopathology ; Hypertrophy ; Male ; Monocrotaline ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Neuregulin ; Neuregulin-1 - pharmacology ; Neuregulin-1 - therapeutic use ; neuregulin‐1 ; Phospholamban ; Phosphorylation ; Proteins ; pulmonary arterial hypertension ; Pulmonary arteries ; Pulmonary artery ; Pulmonary hypertension ; Rats ; Rats, Wistar ; Recombinant Proteins - pharmacology ; Recombinant Proteins - therapeutic use ; right ventricle ; Stiffness ; Tension ; Vascular Stiffness - drug effects ; Ventricle ; Ventricular Dysfunction, Right - drug therapy ; Ventricular Remodeling - drug effects</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2019-03, Vol.46 (3), p.255-265</ispartof><rights>2018 John Wiley &amp; Sons Australia, Ltd</rights><rights>2018 John Wiley &amp; Sons Australia, Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-109b71cb2868ae01062644b45eb35b3d777a98923ac3cec06fbfb9bae037c70c3</citedby><cites>FETCH-LOGICAL-c4393-109b71cb2868ae01062644b45eb35b3d777a98923ac3cec06fbfb9bae037c70c3</cites><orcidid>0000-0003-2528-142X ; 0000-0002-4238-4183 ; 0000-0003-1937-3782 ; 0000-0001-7808-3596 ; 0000-0001-6438-3248 ; 0000-0001-6538-1420 ; 0000-0003-3616-6785 ; 0000-0003-2203-436X ; 0000-0001-9381-7420 ; 0000-0003-1527-3776 ; 0000-0003-3767-2559 ; 0000-0001-7056-9508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1440-1681.13043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1440-1681.13043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30339273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adão, Rui</creatorcontrib><creatorcontrib>Mendes‐Ferreira, Pedro</creatorcontrib><creatorcontrib>Maia‐Rocha, Carolina</creatorcontrib><creatorcontrib>Santos‐Ribeiro, Diana</creatorcontrib><creatorcontrib>Rodrigues, Patrícia Gonçalves</creatorcontrib><creatorcontrib>Vidal‐Meireles, André</creatorcontrib><creatorcontrib>Monteiro‐Pinto, Cláudia</creatorcontrib><creatorcontrib>Pimentel, Luís D.</creatorcontrib><creatorcontrib>Falcão‐Pires, Inês</creatorcontrib><creatorcontrib>De Keulenaer, Gilles W.</creatorcontrib><creatorcontrib>Leite‐Moreira, Adelino F.</creatorcontrib><creatorcontrib>Brás‐Silva, Carmen</creatorcontrib><title>Neuregulin‐1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Summary We have previously shown that treatment with recombinant human neuregulin‐1 (rhNRG‐1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)‐induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG‐1 treatment showed direct myocardial anti‐remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG‐1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG‐1 treatment on ventricular passive stiffness in RV and LV samples from MCT‐induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling‐associated genes and calcium handling proteins. Chronic rhNRG‐1 treatment decreased passive tension development in RV and LV isolated from animals with MCT‐induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG‐1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB‐induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac‐specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG‐1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.</description><subject>Animals</subject><subject>Attenuation</subject><subject>Banding</subject><subject>Calcium</subject><subject>Calcium Signaling - drug effects</subject><subject>Cardiomyocytes</subject><subject>Diastole - physiology</subject><subject>diastolic function</subject><subject>diastolic stiffness</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Heart</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension, Pulmonary - pathology</subject><subject>Hypertension, Pulmonary - physiopathology</subject><subject>Hypertrophy</subject><subject>Male</subject><subject>Monocrotaline</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Neuregulin</subject><subject>Neuregulin-1 - pharmacology</subject><subject>Neuregulin-1 - therapeutic use</subject><subject>neuregulin‐1</subject><subject>Phospholamban</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>pulmonary arterial hypertension</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary hypertension</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>right ventricle</subject><subject>Stiffness</subject><subject>Tension</subject><subject>Vascular Stiffness - drug effects</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Right - drug therapy</subject><subject>Ventricular Remodeling - drug effects</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFuFDEQhi0EIpdAnQ5ZSpNmk_HO7nq3jE4JRIqAAmrL9s0mjnzew14HruMReEaeBB-XpKDBkmVp9PnTzD-MHQs4E-Wci6aBSnS9OBMIDb5gi-fKS7YAhLYSvYQDdpjSPQC00OFrdoCAONQSF2z8SDnSbfYu_P75S3A9zxSyninx6G7vZv5AYY7OZq8jXzmd5sk7y9PsxjFQStwFTj82FN26gNrzTfbrKei45XfbUi625Kbwhr0atU_09vE9Yl-vLr8sP1Q3n95fLy9uKtvggJWAwUhhTd13vSYQ0NVd05imJYOtwZWUUg_9UKO2aMlCN5rRDKagKK0Ei0fsdO_dxOlbpjSrtUuWvNeBppxULWqUQvYCCnryD3o_5RhKd4XqUeyuLNT5nrJxSinSqDZl1DKeEqB2K1C7wNUucPV3BeXHu0dvNmtaPfNPmReg3QPfnaft_3xqefl5L_4D4dGSeA</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Adão, Rui</creator><creator>Mendes‐Ferreira, Pedro</creator><creator>Maia‐Rocha, Carolina</creator><creator>Santos‐Ribeiro, Diana</creator><creator>Rodrigues, Patrícia Gonçalves</creator><creator>Vidal‐Meireles, André</creator><creator>Monteiro‐Pinto, Cláudia</creator><creator>Pimentel, Luís D.</creator><creator>Falcão‐Pires, Inês</creator><creator>De Keulenaer, Gilles W.</creator><creator>Leite‐Moreira, Adelino F.</creator><creator>Brás‐Silva, Carmen</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2528-142X</orcidid><orcidid>https://orcid.org/0000-0002-4238-4183</orcidid><orcidid>https://orcid.org/0000-0003-1937-3782</orcidid><orcidid>https://orcid.org/0000-0001-7808-3596</orcidid><orcidid>https://orcid.org/0000-0001-6438-3248</orcidid><orcidid>https://orcid.org/0000-0001-6538-1420</orcidid><orcidid>https://orcid.org/0000-0003-3616-6785</orcidid><orcidid>https://orcid.org/0000-0003-2203-436X</orcidid><orcidid>https://orcid.org/0000-0001-9381-7420</orcidid><orcidid>https://orcid.org/0000-0003-1527-3776</orcidid><orcidid>https://orcid.org/0000-0003-3767-2559</orcidid><orcidid>https://orcid.org/0000-0001-7056-9508</orcidid></search><sort><creationdate>201903</creationdate><title>Neuregulin‐1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension</title><author>Adão, Rui ; Mendes‐Ferreira, Pedro ; Maia‐Rocha, Carolina ; Santos‐Ribeiro, Diana ; Rodrigues, Patrícia Gonçalves ; Vidal‐Meireles, André ; Monteiro‐Pinto, Cláudia ; Pimentel, Luís D. ; Falcão‐Pires, Inês ; De Keulenaer, Gilles W. ; Leite‐Moreira, Adelino F. ; Brás‐Silva, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-109b71cb2868ae01062644b45eb35b3d777a98923ac3cec06fbfb9bae037c70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Attenuation</topic><topic>Banding</topic><topic>Calcium</topic><topic>Calcium Signaling - drug effects</topic><topic>Cardiomyocytes</topic><topic>Diastole - physiology</topic><topic>diastolic function</topic><topic>diastolic stiffness</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Heart</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension, Pulmonary - pathology</topic><topic>Hypertension, Pulmonary - physiopathology</topic><topic>Hypertrophy</topic><topic>Male</topic><topic>Monocrotaline</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Neuregulin</topic><topic>Neuregulin-1 - pharmacology</topic><topic>Neuregulin-1 - therapeutic use</topic><topic>neuregulin‐1</topic><topic>Phospholamban</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>pulmonary arterial hypertension</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary hypertension</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>right ventricle</topic><topic>Stiffness</topic><topic>Tension</topic><topic>Vascular Stiffness - drug effects</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Right - drug therapy</topic><topic>Ventricular Remodeling - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adão, Rui</creatorcontrib><creatorcontrib>Mendes‐Ferreira, Pedro</creatorcontrib><creatorcontrib>Maia‐Rocha, Carolina</creatorcontrib><creatorcontrib>Santos‐Ribeiro, Diana</creatorcontrib><creatorcontrib>Rodrigues, Patrícia Gonçalves</creatorcontrib><creatorcontrib>Vidal‐Meireles, André</creatorcontrib><creatorcontrib>Monteiro‐Pinto, Cláudia</creatorcontrib><creatorcontrib>Pimentel, Luís D.</creatorcontrib><creatorcontrib>Falcão‐Pires, Inês</creatorcontrib><creatorcontrib>De Keulenaer, Gilles W.</creatorcontrib><creatorcontrib>Leite‐Moreira, Adelino F.</creatorcontrib><creatorcontrib>Brás‐Silva, Carmen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adão, Rui</au><au>Mendes‐Ferreira, Pedro</au><au>Maia‐Rocha, Carolina</au><au>Santos‐Ribeiro, Diana</au><au>Rodrigues, Patrícia Gonçalves</au><au>Vidal‐Meireles, André</au><au>Monteiro‐Pinto, Cláudia</au><au>Pimentel, Luís D.</au><au>Falcão‐Pires, Inês</au><au>De Keulenaer, Gilles W.</au><au>Leite‐Moreira, Adelino F.</au><au>Brás‐Silva, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuregulin‐1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2019-03</date><risdate>2019</risdate><volume>46</volume><issue>3</issue><spage>255</spage><epage>265</epage><pages>255-265</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Summary We have previously shown that treatment with recombinant human neuregulin‐1 (rhNRG‐1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)‐induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG‐1 treatment showed direct myocardial anti‐remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG‐1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG‐1 treatment on ventricular passive stiffness in RV and LV samples from MCT‐induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling‐associated genes and calcium handling proteins. Chronic rhNRG‐1 treatment decreased passive tension development in RV and LV isolated from animals with MCT‐induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG‐1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB‐induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac‐specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG‐1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30339273</pmid><doi>10.1111/1440-1681.13043</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2528-142X</orcidid><orcidid>https://orcid.org/0000-0002-4238-4183</orcidid><orcidid>https://orcid.org/0000-0003-1937-3782</orcidid><orcidid>https://orcid.org/0000-0001-7808-3596</orcidid><orcidid>https://orcid.org/0000-0001-6438-3248</orcidid><orcidid>https://orcid.org/0000-0001-6538-1420</orcidid><orcidid>https://orcid.org/0000-0003-3616-6785</orcidid><orcidid>https://orcid.org/0000-0003-2203-436X</orcidid><orcidid>https://orcid.org/0000-0001-9381-7420</orcidid><orcidid>https://orcid.org/0000-0003-1527-3776</orcidid><orcidid>https://orcid.org/0000-0003-3767-2559</orcidid><orcidid>https://orcid.org/0000-0001-7056-9508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2019-03, Vol.46 (3), p.255-265
issn 0305-1870
1440-1681
language eng
recordid cdi_proquest_miscellaneous_2123717810
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Attenuation
Banding
Calcium
Calcium Signaling - drug effects
Cardiomyocytes
Diastole - physiology
diastolic function
diastolic stiffness
Gene expression
Gene Expression Regulation - drug effects
Heart
Humans
Hypertension
Hypertension, Pulmonary - pathology
Hypertension, Pulmonary - physiopathology
Hypertrophy
Male
Monocrotaline
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Neuregulin
Neuregulin-1 - pharmacology
Neuregulin-1 - therapeutic use
neuregulin‐1
Phospholamban
Phosphorylation
Proteins
pulmonary arterial hypertension
Pulmonary arteries
Pulmonary artery
Pulmonary hypertension
Rats
Rats, Wistar
Recombinant Proteins - pharmacology
Recombinant Proteins - therapeutic use
right ventricle
Stiffness
Tension
Vascular Stiffness - drug effects
Ventricle
Ventricular Dysfunction, Right - drug therapy
Ventricular Remodeling - drug effects
title Neuregulin‐1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuregulin%E2%80%901%20attenuates%20right%20ventricular%20diastolic%20stiffness%20in%20experimental%20pulmonary%20hypertension&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Ad%C3%A3o,%20Rui&rft.date=2019-03&rft.volume=46&rft.issue=3&rft.spage=255&rft.epage=265&rft.pages=255-265&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13043&rft_dat=%3Cproquest_cross%3E2123717810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183118317&rft_id=info:pmid/30339273&rfr_iscdi=true