Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein

The detailed reaction mechanism and kinetics of Criegee intermediate CH2OO with acrolein were investigated. CH2OO may add to the CO or CC double bond of acrolein to form a five-membered ring adducts, and it may also insert the terminal oxygen atom or insert itself into the C–H bond of acrolein. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-11, Vol.122 (44), p.8729-8737
Hauptverfasser: Sun, Cuihong, Zhang, Shaoyan, Yue, Junyong, Zhang, Shaowen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8737
container_issue 44
container_start_page 8729
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 122
creator Sun, Cuihong
Zhang, Shaoyan
Yue, Junyong
Zhang, Shaowen
description The detailed reaction mechanism and kinetics of Criegee intermediate CH2OO with acrolein were investigated. CH2OO may add to the CO or CC double bond of acrolein to form a five-membered ring adducts, and it may also insert the terminal oxygen atom or insert itself into the C–H bond of acrolein. The addition reactions are more favorable in energy than the insertion reactions. The master equation calculation show that the most competitive reaction channel is the 1,3-cycloaddition of CH2OO across the CO double bond forming the secondary ozonide (SOZ). The lowest energy pathway for SOZ decomposition involves the formation of the singlet biradical intermediate by ring fission, the H-shift isomerization and the dissociation to products. The calculated overall rate constant decreases as the temperature increases from 200 to 500 K, and at 298 K, it is 4.31 × 10–12 cm3 molecule–1 s–1. The branching ratio of collisionally stabilized SOZ increases with the increase of pressure. At low pressure, some of SOZ decompose to HCOOH + acrolein or HCHO + acrylic acid. The pressure dependence of this reaction is in agreement with the previous theoretical and experimental observations for the reaction of CH2OO with acetaldehyde.
doi_str_mv 10.1021/acs.jpca.8b06897
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123717610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123717610</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-74414edbd72d64f8eb1b2a9bde7db85f105d0ee65c8a4cf3334b4690b63930f43</originalsourceid><addsrcrecordid>eNotkMtLw0AQhxdRsFbvHvfowdR95nEsQdtipaD1HPYxMVvSTc1uEP97U9vTzPz4GGY-hO4pmVHC6JMyYbY7GDXLNUnzIrtAEyoZSSSj8nLsSV4kMuXFNboJYUcIoZyJCbLbBroeojOqxR9xsL-48zg2gN9BmejG4Q1Mo7wLe6y8xa_OH-mAuxqXvYMvALzyEfo9WKci4HLJNhv842KD56bvWnD-Fl3Vqg1wd65T9PnyvC2XyXqzWJXzdaJYIWOSCUEFWG0zZlNR56CpZqrQFjKrc1lTIi0BSKXJlTA151xokRZEj29xUgs-RQ-nvYe--x4gxGrvgoG2VR66IVSMMp7RLKVkRB9P6Oit2nVD78fDKkqqo8zqPxxlVmeZ_A9TD2m6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123717610</pqid></control><display><type>article</type><title>Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein</title><source>American Chemical Society Journals</source><creator>Sun, Cuihong ; Zhang, Shaoyan ; Yue, Junyong ; Zhang, Shaowen</creator><creatorcontrib>Sun, Cuihong ; Zhang, Shaoyan ; Yue, Junyong ; Zhang, Shaowen</creatorcontrib><description>The detailed reaction mechanism and kinetics of Criegee intermediate CH2OO with acrolein were investigated. CH2OO may add to the CO or CC double bond of acrolein to form a five-membered ring adducts, and it may also insert the terminal oxygen atom or insert itself into the C–H bond of acrolein. The addition reactions are more favorable in energy than the insertion reactions. The master equation calculation show that the most competitive reaction channel is the 1,3-cycloaddition of CH2OO across the CO double bond forming the secondary ozonide (SOZ). The lowest energy pathway for SOZ decomposition involves the formation of the singlet biradical intermediate by ring fission, the H-shift isomerization and the dissociation to products. The calculated overall rate constant decreases as the temperature increases from 200 to 500 K, and at 298 K, it is 4.31 × 10–12 cm3 molecule–1 s–1. The branching ratio of collisionally stabilized SOZ increases with the increase of pressure. At low pressure, some of SOZ decompose to HCOOH + acrolein or HCHO + acrylic acid. The pressure dependence of this reaction is in agreement with the previous theoretical and experimental observations for the reaction of CH2OO with acetaldehyde.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.8b06897</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2018-11, Vol.122 (44), p.8729-8737</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6135-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.8b06897$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.8b06897$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sun, Cuihong</creatorcontrib><creatorcontrib>Zhang, Shaoyan</creatorcontrib><creatorcontrib>Yue, Junyong</creatorcontrib><creatorcontrib>Zhang, Shaowen</creatorcontrib><title>Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The detailed reaction mechanism and kinetics of Criegee intermediate CH2OO with acrolein were investigated. CH2OO may add to the CO or CC double bond of acrolein to form a five-membered ring adducts, and it may also insert the terminal oxygen atom or insert itself into the C–H bond of acrolein. The addition reactions are more favorable in energy than the insertion reactions. The master equation calculation show that the most competitive reaction channel is the 1,3-cycloaddition of CH2OO across the CO double bond forming the secondary ozonide (SOZ). The lowest energy pathway for SOZ decomposition involves the formation of the singlet biradical intermediate by ring fission, the H-shift isomerization and the dissociation to products. The calculated overall rate constant decreases as the temperature increases from 200 to 500 K, and at 298 K, it is 4.31 × 10–12 cm3 molecule–1 s–1. The branching ratio of collisionally stabilized SOZ increases with the increase of pressure. At low pressure, some of SOZ decompose to HCOOH + acrolein or HCHO + acrylic acid. The pressure dependence of this reaction is in agreement with the previous theoretical and experimental observations for the reaction of CH2OO with acetaldehyde.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkMtLw0AQhxdRsFbvHvfowdR95nEsQdtipaD1HPYxMVvSTc1uEP97U9vTzPz4GGY-hO4pmVHC6JMyYbY7GDXLNUnzIrtAEyoZSSSj8nLsSV4kMuXFNboJYUcIoZyJCbLbBroeojOqxR9xsL-48zg2gN9BmejG4Q1Mo7wLe6y8xa_OH-mAuxqXvYMvALzyEfo9WKci4HLJNhv842KD56bvWnD-Fl3Vqg1wd65T9PnyvC2XyXqzWJXzdaJYIWOSCUEFWG0zZlNR56CpZqrQFjKrc1lTIi0BSKXJlTA151xokRZEj29xUgs-RQ-nvYe--x4gxGrvgoG2VR66IVSMMp7RLKVkRB9P6Oit2nVD78fDKkqqo8zqPxxlVmeZ_A9TD2m6</recordid><startdate>20181108</startdate><enddate>20181108</enddate><creator>Sun, Cuihong</creator><creator>Zhang, Shaoyan</creator><creator>Yue, Junyong</creator><creator>Zhang, Shaowen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6135-5062</orcidid></search><sort><creationdate>20181108</creationdate><title>Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein</title><author>Sun, Cuihong ; Zhang, Shaoyan ; Yue, Junyong ; Zhang, Shaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-74414edbd72d64f8eb1b2a9bde7db85f105d0ee65c8a4cf3334b4690b63930f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Cuihong</creatorcontrib><creatorcontrib>Zhang, Shaoyan</creatorcontrib><creatorcontrib>Yue, Junyong</creatorcontrib><creatorcontrib>Zhang, Shaowen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Cuihong</au><au>Zhang, Shaoyan</au><au>Yue, Junyong</au><au>Zhang, Shaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2018-11-08</date><risdate>2018</risdate><volume>122</volume><issue>44</issue><spage>8729</spage><epage>8737</epage><pages>8729-8737</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The detailed reaction mechanism and kinetics of Criegee intermediate CH2OO with acrolein were investigated. CH2OO may add to the CO or CC double bond of acrolein to form a five-membered ring adducts, and it may also insert the terminal oxygen atom or insert itself into the C–H bond of acrolein. The addition reactions are more favorable in energy than the insertion reactions. The master equation calculation show that the most competitive reaction channel is the 1,3-cycloaddition of CH2OO across the CO double bond forming the secondary ozonide (SOZ). The lowest energy pathway for SOZ decomposition involves the formation of the singlet biradical intermediate by ring fission, the H-shift isomerization and the dissociation to products. The calculated overall rate constant decreases as the temperature increases from 200 to 500 K, and at 298 K, it is 4.31 × 10–12 cm3 molecule–1 s–1. The branching ratio of collisionally stabilized SOZ increases with the increase of pressure. At low pressure, some of SOZ decompose to HCOOH + acrolein or HCHO + acrylic acid. The pressure dependence of this reaction is in agreement with the previous theoretical and experimental observations for the reaction of CH2OO with acetaldehyde.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.8b06897</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6135-5062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-11, Vol.122 (44), p.8729-8737
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2123717610
source American Chemical Society Journals
title Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20on%20the%20Reaction%20Mechanism%20and%20Kinetics%20of%20Criegee%20Intermediate%20CH2OO%20with%20Acrolein&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Sun,%20Cuihong&rft.date=2018-11-08&rft.volume=122&rft.issue=44&rft.spage=8729&rft.epage=8737&rft.pages=8729-8737&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.8b06897&rft_dat=%3Cproquest_acs_j%3E2123717610%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123717610&rft_id=info:pmid/&rfr_iscdi=true