Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism
Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structural...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2019-01, Vol.12 (1), p.194-199 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 194 |
container_title | ChemSusChem |
container_volume | 12 |
creator | Schwarz, Dana Acharjya, Amitava Ichangi, Arun Kochergin, Yaroslav S. Lyu, Pengbo Opanasenko, Maksym V. Tarábek, Ján Vacek Chocholoušová, Jana Vacek, Jaroslav Schmidt, Johannes Čejka, Jiří Nachtigall, Petr Thomas, Arne Bojdys, Michael J. |
description | Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics.
Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent. |
doi_str_mv | 10.1002/cssc.201802034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123713975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123713975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</originalsourceid><addsrcrecordid>eNqFkUFLwzAUx4Mobk6vHqXgxcvmS9Mm7VGHTkFw4ARvJU0Tm9E2M2mRevIj-Bn9JGZMJ3jxlEf4vR_vvT9CxxgmGCA8F86JSQg4gRBItIOGOKHROKbR0-62JniADpxbAlBIKd1HAwKExCnEQ2QWXaOb56AtZTA31jjd9gFvimBemtYI3vKqb7UI5tIqY2veCBkYFSys5m-6kZ_vH5fcySKYWb4qC903a03V19I677Smey43H8auSu3qQ7SneOXk0fc7Qo_XV4vpzfjufnY7vbgbi4j5oTmTCcshZSqOVKKUhEhQULygXEKRpyrnBQigKhKC8URFccJJLphigP3WKRmhs413Zc1LJ12b1doJWVW8kaZzWYhDwjBJWezR0z_o0nS28dN5ijLC0jheU5MNJfyRnJUqW1ldc9tnGLJ1FNk6imwbhW84-dZ2eS2LLf5zew-kG-BVV7L_R5dNHx6mv_IvuM2ZEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167379555</pqid></control><display><type>article</type><title>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</title><source>Wiley Journals</source><creator>Schwarz, Dana ; Acharjya, Amitava ; Ichangi, Arun ; Kochergin, Yaroslav S. ; Lyu, Pengbo ; Opanasenko, Maksym V. ; Tarábek, Ján ; Vacek Chocholoušová, Jana ; Vacek, Jaroslav ; Schmidt, Johannes ; Čejka, Jiří ; Nachtigall, Petr ; Thomas, Arne ; Bojdys, Michael J.</creator><creatorcontrib>Schwarz, Dana ; Acharjya, Amitava ; Ichangi, Arun ; Kochergin, Yaroslav S. ; Lyu, Pengbo ; Opanasenko, Maksym V. ; Tarábek, Ján ; Vacek Chocholoušová, Jana ; Vacek, Jaroslav ; Schmidt, Johannes ; Čejka, Jiří ; Nachtigall, Petr ; Thomas, Arne ; Bojdys, Michael J.</creatorcontrib><description>Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics.
Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201802034</identifier><identifier>PMID: 30335905</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amorphous materials ; carbon ; Catalysis ; Catalysts ; Charge transfer ; Chemical reactions ; Chemical synthesis ; Copper ; covalent organic frameworks ; Crystal structure ; Crystallinity ; Hydrogen evolution ; Organic chemistry ; Organic materials ; Photocatalysis ; Photocatalysts ; Polymers ; Polymorphism ; Porosity ; porous polymers ; semiconductors ; Water splitting</subject><ispartof>ChemSusChem, 2019-01, Vol.12 (1), p.194-199</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</citedby><cites>FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</cites><orcidid>0000-0002-0998-171X ; 0000-0002-3094-4331 ; 0000-0002-9060-6350 ; 0000-0002-2130-4930 ; 0000-0002-2592-4168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201802034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201802034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30335905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Acharjya, Amitava</creatorcontrib><creatorcontrib>Ichangi, Arun</creatorcontrib><creatorcontrib>Kochergin, Yaroslav S.</creatorcontrib><creatorcontrib>Lyu, Pengbo</creatorcontrib><creatorcontrib>Opanasenko, Maksym V.</creatorcontrib><creatorcontrib>Tarábek, Ján</creatorcontrib><creatorcontrib>Vacek Chocholoušová, Jana</creatorcontrib><creatorcontrib>Vacek, Jaroslav</creatorcontrib><creatorcontrib>Schmidt, Johannes</creatorcontrib><creatorcontrib>Čejka, Jiří</creatorcontrib><creatorcontrib>Nachtigall, Petr</creatorcontrib><creatorcontrib>Thomas, Arne</creatorcontrib><creatorcontrib>Bojdys, Michael J.</creatorcontrib><title>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics.
Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.</description><subject>Amorphous materials</subject><subject>carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Copper</subject><subject>covalent organic frameworks</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Hydrogen evolution</subject><subject>Organic chemistry</subject><subject>Organic materials</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Polymers</subject><subject>Polymorphism</subject><subject>Porosity</subject><subject>porous polymers</subject><subject>semiconductors</subject><subject>Water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFLwzAUx4Mobk6vHqXgxcvmS9Mm7VGHTkFw4ARvJU0Tm9E2M2mRevIj-Bn9JGZMJ3jxlEf4vR_vvT9CxxgmGCA8F86JSQg4gRBItIOGOKHROKbR0-62JniADpxbAlBIKd1HAwKExCnEQ2QWXaOb56AtZTA31jjd9gFvimBemtYI3vKqb7UI5tIqY2veCBkYFSys5m-6kZ_vH5fcySKYWb4qC903a03V19I677Smey43H8auSu3qQ7SneOXk0fc7Qo_XV4vpzfjufnY7vbgbi4j5oTmTCcshZSqOVKKUhEhQULygXEKRpyrnBQigKhKC8URFccJJLphigP3WKRmhs413Zc1LJ12b1doJWVW8kaZzWYhDwjBJWezR0z_o0nS28dN5ijLC0jheU5MNJfyRnJUqW1ldc9tnGLJ1FNk6imwbhW84-dZ2eS2LLf5zew-kG-BVV7L_R5dNHx6mv_IvuM2ZEA</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Schwarz, Dana</creator><creator>Acharjya, Amitava</creator><creator>Ichangi, Arun</creator><creator>Kochergin, Yaroslav S.</creator><creator>Lyu, Pengbo</creator><creator>Opanasenko, Maksym V.</creator><creator>Tarábek, Ján</creator><creator>Vacek Chocholoušová, Jana</creator><creator>Vacek, Jaroslav</creator><creator>Schmidt, Johannes</creator><creator>Čejka, Jiří</creator><creator>Nachtigall, Petr</creator><creator>Thomas, Arne</creator><creator>Bojdys, Michael J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0998-171X</orcidid><orcidid>https://orcid.org/0000-0002-3094-4331</orcidid><orcidid>https://orcid.org/0000-0002-9060-6350</orcidid><orcidid>https://orcid.org/0000-0002-2130-4930</orcidid><orcidid>https://orcid.org/0000-0002-2592-4168</orcidid></search><sort><creationdate>20190110</creationdate><title>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</title><author>Schwarz, Dana ; Acharjya, Amitava ; Ichangi, Arun ; Kochergin, Yaroslav S. ; Lyu, Pengbo ; Opanasenko, Maksym V. ; Tarábek, Ján ; Vacek Chocholoušová, Jana ; Vacek, Jaroslav ; Schmidt, Johannes ; Čejka, Jiří ; Nachtigall, Petr ; Thomas, Arne ; Bojdys, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous materials</topic><topic>carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Copper</topic><topic>covalent organic frameworks</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Hydrogen evolution</topic><topic>Organic chemistry</topic><topic>Organic materials</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Polymers</topic><topic>Polymorphism</topic><topic>Porosity</topic><topic>porous polymers</topic><topic>semiconductors</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Acharjya, Amitava</creatorcontrib><creatorcontrib>Ichangi, Arun</creatorcontrib><creatorcontrib>Kochergin, Yaroslav S.</creatorcontrib><creatorcontrib>Lyu, Pengbo</creatorcontrib><creatorcontrib>Opanasenko, Maksym V.</creatorcontrib><creatorcontrib>Tarábek, Ján</creatorcontrib><creatorcontrib>Vacek Chocholoušová, Jana</creatorcontrib><creatorcontrib>Vacek, Jaroslav</creatorcontrib><creatorcontrib>Schmidt, Johannes</creatorcontrib><creatorcontrib>Čejka, Jiří</creatorcontrib><creatorcontrib>Nachtigall, Petr</creatorcontrib><creatorcontrib>Thomas, Arne</creatorcontrib><creatorcontrib>Bojdys, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Dana</au><au>Acharjya, Amitava</au><au>Ichangi, Arun</au><au>Kochergin, Yaroslav S.</au><au>Lyu, Pengbo</au><au>Opanasenko, Maksym V.</au><au>Tarábek, Ján</au><au>Vacek Chocholoušová, Jana</au><au>Vacek, Jaroslav</au><au>Schmidt, Johannes</au><au>Čejka, Jiří</au><au>Nachtigall, Petr</au><au>Thomas, Arne</au><au>Bojdys, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>12</volume><issue>1</issue><spage>194</spage><epage>199</epage><pages>194-199</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics.
Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30335905</pmid><doi>10.1002/cssc.201802034</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0998-171X</orcidid><orcidid>https://orcid.org/0000-0002-3094-4331</orcidid><orcidid>https://orcid.org/0000-0002-9060-6350</orcidid><orcidid>https://orcid.org/0000-0002-2130-4930</orcidid><orcidid>https://orcid.org/0000-0002-2592-4168</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2019-01, Vol.12 (1), p.194-199 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2123713975 |
source | Wiley Journals |
subjects | Amorphous materials carbon Catalysis Catalysts Charge transfer Chemical reactions Chemical synthesis Copper covalent organic frameworks Crystal structure Crystallinity Hydrogen evolution Organic chemistry Organic materials Photocatalysis Photocatalysts Polymers Polymorphism Porosity porous polymers semiconductors Water splitting |
title | Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20Porosity%20and%20Photocatalytic%20Performance%20of%20Triazine%E2%80%90Based%20Graphdiyne%20Polymers%20through%20Polymorphism&rft.jtitle=ChemSusChem&rft.au=Schwarz,%20Dana&rft.date=2019-01-10&rft.volume=12&rft.issue=1&rft.spage=194&rft.epage=199&rft.pages=194-199&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201802034&rft_dat=%3Cproquest_cross%3E2123713975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167379555&rft_id=info:pmid/30335905&rfr_iscdi=true |