Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism

Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2019-01, Vol.12 (1), p.194-199
Hauptverfasser: Schwarz, Dana, Acharjya, Amitava, Ichangi, Arun, Kochergin, Yaroslav S., Lyu, Pengbo, Opanasenko, Maksym V., Tarábek, Ján, Vacek Chocholoušová, Jana, Vacek, Jaroslav, Schmidt, Johannes, Čejka, Jiří, Nachtigall, Petr, Thomas, Arne, Bojdys, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 194
container_title ChemSusChem
container_volume 12
creator Schwarz, Dana
Acharjya, Amitava
Ichangi, Arun
Kochergin, Yaroslav S.
Lyu, Pengbo
Opanasenko, Maksym V.
Tarábek, Ján
Vacek Chocholoušová, Jana
Vacek, Jaroslav
Schmidt, Johannes
Čejka, Jiří
Nachtigall, Petr
Thomas, Arne
Bojdys, Michael J.
description Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics. Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.
doi_str_mv 10.1002/cssc.201802034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2123713975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123713975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</originalsourceid><addsrcrecordid>eNqFkUFLwzAUx4Mobk6vHqXgxcvmS9Mm7VGHTkFw4ARvJU0Tm9E2M2mRevIj-Bn9JGZMJ3jxlEf4vR_vvT9CxxgmGCA8F86JSQg4gRBItIOGOKHROKbR0-62JniADpxbAlBIKd1HAwKExCnEQ2QWXaOb56AtZTA31jjd9gFvimBemtYI3vKqb7UI5tIqY2veCBkYFSys5m-6kZ_vH5fcySKYWb4qC903a03V19I677Smey43H8auSu3qQ7SneOXk0fc7Qo_XV4vpzfjufnY7vbgbi4j5oTmTCcshZSqOVKKUhEhQULygXEKRpyrnBQigKhKC8URFccJJLphigP3WKRmhs413Zc1LJ12b1doJWVW8kaZzWYhDwjBJWezR0z_o0nS28dN5ijLC0jheU5MNJfyRnJUqW1ldc9tnGLJ1FNk6imwbhW84-dZ2eS2LLf5zew-kG-BVV7L_R5dNHx6mv_IvuM2ZEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167379555</pqid></control><display><type>article</type><title>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</title><source>Wiley Journals</source><creator>Schwarz, Dana ; Acharjya, Amitava ; Ichangi, Arun ; Kochergin, Yaroslav S. ; Lyu, Pengbo ; Opanasenko, Maksym V. ; Tarábek, Ján ; Vacek Chocholoušová, Jana ; Vacek, Jaroslav ; Schmidt, Johannes ; Čejka, Jiří ; Nachtigall, Petr ; Thomas, Arne ; Bojdys, Michael J.</creator><creatorcontrib>Schwarz, Dana ; Acharjya, Amitava ; Ichangi, Arun ; Kochergin, Yaroslav S. ; Lyu, Pengbo ; Opanasenko, Maksym V. ; Tarábek, Ján ; Vacek Chocholoušová, Jana ; Vacek, Jaroslav ; Schmidt, Johannes ; Čejka, Jiří ; Nachtigall, Petr ; Thomas, Arne ; Bojdys, Michael J.</creatorcontrib><description>Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics. Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201802034</identifier><identifier>PMID: 30335905</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amorphous materials ; carbon ; Catalysis ; Catalysts ; Charge transfer ; Chemical reactions ; Chemical synthesis ; Copper ; covalent organic frameworks ; Crystal structure ; Crystallinity ; Hydrogen evolution ; Organic chemistry ; Organic materials ; Photocatalysis ; Photocatalysts ; Polymers ; Polymorphism ; Porosity ; porous polymers ; semiconductors ; Water splitting</subject><ispartof>ChemSusChem, 2019-01, Vol.12 (1), p.194-199</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</citedby><cites>FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</cites><orcidid>0000-0002-0998-171X ; 0000-0002-3094-4331 ; 0000-0002-9060-6350 ; 0000-0002-2130-4930 ; 0000-0002-2592-4168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201802034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201802034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30335905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Acharjya, Amitava</creatorcontrib><creatorcontrib>Ichangi, Arun</creatorcontrib><creatorcontrib>Kochergin, Yaroslav S.</creatorcontrib><creatorcontrib>Lyu, Pengbo</creatorcontrib><creatorcontrib>Opanasenko, Maksym V.</creatorcontrib><creatorcontrib>Tarábek, Ján</creatorcontrib><creatorcontrib>Vacek Chocholoušová, Jana</creatorcontrib><creatorcontrib>Vacek, Jaroslav</creatorcontrib><creatorcontrib>Schmidt, Johannes</creatorcontrib><creatorcontrib>Čejka, Jiří</creatorcontrib><creatorcontrib>Nachtigall, Petr</creatorcontrib><creatorcontrib>Thomas, Arne</creatorcontrib><creatorcontrib>Bojdys, Michael J.</creatorcontrib><title>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics. Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.</description><subject>Amorphous materials</subject><subject>carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Copper</subject><subject>covalent organic frameworks</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Hydrogen evolution</subject><subject>Organic chemistry</subject><subject>Organic materials</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Polymers</subject><subject>Polymorphism</subject><subject>Porosity</subject><subject>porous polymers</subject><subject>semiconductors</subject><subject>Water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFLwzAUx4Mobk6vHqXgxcvmS9Mm7VGHTkFw4ARvJU0Tm9E2M2mRevIj-Bn9JGZMJ3jxlEf4vR_vvT9CxxgmGCA8F86JSQg4gRBItIOGOKHROKbR0-62JniADpxbAlBIKd1HAwKExCnEQ2QWXaOb56AtZTA31jjd9gFvimBemtYI3vKqb7UI5tIqY2veCBkYFSys5m-6kZ_vH5fcySKYWb4qC903a03V19I677Smey43H8auSu3qQ7SneOXk0fc7Qo_XV4vpzfjufnY7vbgbi4j5oTmTCcshZSqOVKKUhEhQULygXEKRpyrnBQigKhKC8URFccJJLphigP3WKRmhs413Zc1LJ12b1doJWVW8kaZzWYhDwjBJWezR0z_o0nS28dN5ijLC0jheU5MNJfyRnJUqW1ldc9tnGLJ1FNk6imwbhW84-dZ2eS2LLf5zew-kG-BVV7L_R5dNHx6mv_IvuM2ZEA</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Schwarz, Dana</creator><creator>Acharjya, Amitava</creator><creator>Ichangi, Arun</creator><creator>Kochergin, Yaroslav S.</creator><creator>Lyu, Pengbo</creator><creator>Opanasenko, Maksym V.</creator><creator>Tarábek, Ján</creator><creator>Vacek Chocholoušová, Jana</creator><creator>Vacek, Jaroslav</creator><creator>Schmidt, Johannes</creator><creator>Čejka, Jiří</creator><creator>Nachtigall, Petr</creator><creator>Thomas, Arne</creator><creator>Bojdys, Michael J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0998-171X</orcidid><orcidid>https://orcid.org/0000-0002-3094-4331</orcidid><orcidid>https://orcid.org/0000-0002-9060-6350</orcidid><orcidid>https://orcid.org/0000-0002-2130-4930</orcidid><orcidid>https://orcid.org/0000-0002-2592-4168</orcidid></search><sort><creationdate>20190110</creationdate><title>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</title><author>Schwarz, Dana ; Acharjya, Amitava ; Ichangi, Arun ; Kochergin, Yaroslav S. ; Lyu, Pengbo ; Opanasenko, Maksym V. ; Tarábek, Ján ; Vacek Chocholoušová, Jana ; Vacek, Jaroslav ; Schmidt, Johannes ; Čejka, Jiří ; Nachtigall, Petr ; Thomas, Arne ; Bojdys, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-a7e87b097f54f8ffe04c60fad6ae0db9fbad0c06f4cc7a8f458a3bc7f70118693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous materials</topic><topic>carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Copper</topic><topic>covalent organic frameworks</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Hydrogen evolution</topic><topic>Organic chemistry</topic><topic>Organic materials</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Polymers</topic><topic>Polymorphism</topic><topic>Porosity</topic><topic>porous polymers</topic><topic>semiconductors</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Acharjya, Amitava</creatorcontrib><creatorcontrib>Ichangi, Arun</creatorcontrib><creatorcontrib>Kochergin, Yaroslav S.</creatorcontrib><creatorcontrib>Lyu, Pengbo</creatorcontrib><creatorcontrib>Opanasenko, Maksym V.</creatorcontrib><creatorcontrib>Tarábek, Ján</creatorcontrib><creatorcontrib>Vacek Chocholoušová, Jana</creatorcontrib><creatorcontrib>Vacek, Jaroslav</creatorcontrib><creatorcontrib>Schmidt, Johannes</creatorcontrib><creatorcontrib>Čejka, Jiří</creatorcontrib><creatorcontrib>Nachtigall, Petr</creatorcontrib><creatorcontrib>Thomas, Arne</creatorcontrib><creatorcontrib>Bojdys, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Dana</au><au>Acharjya, Amitava</au><au>Ichangi, Arun</au><au>Kochergin, Yaroslav S.</au><au>Lyu, Pengbo</au><au>Opanasenko, Maksym V.</au><au>Tarábek, Ján</au><au>Vacek Chocholoušová, Jana</au><au>Vacek, Jaroslav</au><au>Schmidt, Johannes</au><au>Čejka, Jiří</au><au>Nachtigall, Petr</au><au>Thomas, Arne</au><au>Bojdys, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>12</volume><issue>1</issue><spage>194</spage><epage>199</epage><pages>194-199</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine‐based graphdiyne (TzG) framework are synthesized by a simple, one‐pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII/CuI for TzGPd/Cu. The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu) and an amorphous (TzGPd/Cu) polymorph. Notably, the crystalline and amorphous polymorphs are narrow‐gap semiconductors with permanent surface areas of 660 m2 g−1 and 392 m2 g−1, respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 μmol h−1 g−1 with and 276 μmol h−1 g−1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics. Polymeric polymorphs: Triazine‐based graphdiyne polymers are obtained as crystalline and amorphous polymorphs. These polymers are indirect band‐gap semiconductors with permanent porosity and, hence, of interest as photocatalysts. The crystalline polymorph has efficient charge carrier mobility, owing to an ordered π‐aromatic backbone. The amorphous polymorph confines charge carriers locally and is highly fluorescent.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30335905</pmid><doi>10.1002/cssc.201802034</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0998-171X</orcidid><orcidid>https://orcid.org/0000-0002-3094-4331</orcidid><orcidid>https://orcid.org/0000-0002-9060-6350</orcidid><orcidid>https://orcid.org/0000-0002-2130-4930</orcidid><orcidid>https://orcid.org/0000-0002-2592-4168</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2019-01, Vol.12 (1), p.194-199
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2123713975
source Wiley Journals
subjects Amorphous materials
carbon
Catalysis
Catalysts
Charge transfer
Chemical reactions
Chemical synthesis
Copper
covalent organic frameworks
Crystal structure
Crystallinity
Hydrogen evolution
Organic chemistry
Organic materials
Photocatalysis
Photocatalysts
Polymers
Polymorphism
Porosity
porous polymers
semiconductors
Water splitting
title Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20Porosity%20and%20Photocatalytic%20Performance%20of%20Triazine%E2%80%90Based%20Graphdiyne%20Polymers%20through%20Polymorphism&rft.jtitle=ChemSusChem&rft.au=Schwarz,%20Dana&rft.date=2019-01-10&rft.volume=12&rft.issue=1&rft.spage=194&rft.epage=199&rft.pages=194-199&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201802034&rft_dat=%3Cproquest_cross%3E2123713975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167379555&rft_id=info:pmid/30335905&rfr_iscdi=true