Cascade Amplifiers of Intracellular Reactive Oxygen Species Based on Mitochondria-Targeted Core–Shell ZnO-TPP@D/H Nanorods for Breast Cancer Therapy

Tumor cells are vulnerable to reactive oxygen species (ROS). However, it is still a challenge to induce ROS efficiently in tumor cells. In this study, cascade amplifiers of intracellular ROS based on charge-reversible mitochondria-targeted ZnO-TPP@D/H nanorods (NRs) were first developed for breast c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-11, Vol.10 (45), p.38749-38759
Hauptverfasser: Liang, Xiao, Xu, Shumao, Zhang, Jun, Li, Jing, Shen, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor cells are vulnerable to reactive oxygen species (ROS). However, it is still a challenge to induce ROS efficiently in tumor cells. In this study, cascade amplifiers of intracellular ROS based on charge-reversible mitochondria-targeted ZnO-TPP@D/H nanorods (NRs) were first developed for breast cancer therapy. The core–shell ZnO-TPP@D/H NR with a particle size of 179.60 ± 5.67 nm was composed of a core of a ZnO NR, an inner shell of triphenyl phosphonium (TPP), and an outer shell of heparin. Doxorubicin (DOX) was loaded on ZnO-TPP@D/H NRs with high drug loading efficiency of 22.00 ± 0.18%. The zeta potential of ZnO-TPP@D/H NRs varied from 24.00 ± 0.83 to −34.06 ± 0.87 mV after heparin coating, protecting ZnO-TPP@D/H NRs from nonspecific adsorption in circulation. Mitochondrial targeting was achieved after the degradation of heparin. Cellular uptake assays showed that ZnO-TPP@D/H NRs could accumulate in mitochondria. ROS generation assays showed that ZnO-TPP@D/H NRs could triple the intracellular ROS in 4T1 cells (highly metastatic breast cancer cells) than free DOX. Western blot demonstrated that ZnO-TPP@D/H NRs dramatically induced cell apoptosis in 4T1 cells. In vivo experiments suggested the antitumor potential of ZnO-TPP@D/H NRs.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b12590