Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest

Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2009-05, Vol.199 (1-4), p.3-11
Hauptverfasser: Witt, E. L., Kolka, R. K., Nater, E. A., Wickman, T. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1-4
container_start_page 3
container_title Water, air, and soil pollution
container_volume 199
creator Witt, E. L.
Kolka, R. K.
Nater, E. A.
Wickman, T. R.
description Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across the Superior National Forest in northern Minnesota, USA. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy type and density were the primary influences on THg and MeHg deposition. Highest THg and MeHg concentrations were measured beneath conifer canopies (THg mean = 19.02 ng L −1 ; MeHg mean = 0.28 ng L −1 ) followed by deciduous throughfall (THg mean = 12.53 ng L −1 ; MeHg mean = 0.19 ng L −1 ) then open precipitation (THg mean = 8.19 ng L −1 ; MeHg mean = 0.12 ng L −1 ). The greater efficiency of conifers at scavenging THg and MeHg from the atmosphere may increase the risk of mercury related water quality issues in conifer-dominated systems.
doi_str_mv 10.1007/s11270-008-9854-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21233689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21233689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c11dbdbe1c918606d57e487af8dc658fd38abaa6c80f14e8eaa3badeb8e071373</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEuXjB7BZSLAFfHESOyMUCkgglrKwWI5zoalSu9jJ0H-PSyqQkPByg5_3udNLyBmwK2BMXAeAVLCEMZmUMs8S2CMTyAVP0pKn-2TCWFYmRSnKQ3IUwpLFV0oxIe9PtukGtAapa2i_QDpzHkNPp9q69YY6S-eu1x3VtqYv2C82XRzeDH5D73DtQtu3kWntd_Y2ZiM7Kk7IQaO7gKe7eUzeZvfz6WPy_PrwNL15TgwXRZ8YgLqqKwRTgixYUecCMyl0I2tT5LKpudSV1oWRrIEMJWrNK11jJZEJ4IIfk8vRu_buc4iL1aoNBrtOW3RDUCmknBeyjOD5H3DpBm_jbSplEkSRMx4hGCHjXQgeG7X27Ur7jQKmtlWrsWoVq1bbqhXEzMVOrIPRXeO1NW34CaaQCZ5lW3c6ciF-2Q_0vwf8L_8CcKqOTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208176503</pqid></control><display><type>article</type><title>Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest</title><source>SpringerLink Journals</source><creator>Witt, E. L. ; Kolka, R. K. ; Nater, E. A. ; Wickman, T. R.</creator><creatorcontrib>Witt, E. L. ; Kolka, R. K. ; Nater, E. A. ; Wickman, T. R.</creatorcontrib><description>Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across the Superior National Forest in northern Minnesota, USA. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy type and density were the primary influences on THg and MeHg deposition. Highest THg and MeHg concentrations were measured beneath conifer canopies (THg mean = 19.02 ng L −1 ; MeHg mean = 0.28 ng L −1 ) followed by deciduous throughfall (THg mean = 12.53 ng L −1 ; MeHg mean = 0.19 ng L −1 ) then open precipitation (THg mean = 8.19 ng L −1 ; MeHg mean = 0.12 ng L −1 ). The greater efficiency of conifers at scavenging THg and MeHg from the atmosphere may increase the risk of mercury related water quality issues in conifer-dominated systems.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-008-9854-1</identifier><identifier>CODEN: WAPLAC</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Applied sciences ; Aquatic environment ; Atmospheric pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biological and medical sciences ; Boreal forests ; Canopies ; Climate Change/Climate Change Impacts ; Coniferous trees ; Conifers ; Contamination ; Earth and Environmental Science ; Ecotoxicology, biological effects of pollution ; Effects of pollution and side effects of pesticides on plants and fungi ; Environment ; Environmental monitoring ; Exact sciences and technology ; Forests ; Fundamental and applied biological sciences. Psychology ; Herbivores ; Hydrogeology ; Mercury ; Methylmercury ; National forests ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Precipitation ; Soil Science &amp; Conservation ; Studies ; Taiga ; Throughfall ; Water quality ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2009-05, Vol.199 (1-4), p.3-11</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c11dbdbe1c918606d57e487af8dc658fd38abaa6c80f14e8eaa3badeb8e071373</citedby><cites>FETCH-LOGICAL-c376t-c11dbdbe1c918606d57e487af8dc658fd38abaa6c80f14e8eaa3badeb8e071373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-008-9854-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-008-9854-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21473443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Witt, E. L.</creatorcontrib><creatorcontrib>Kolka, R. K.</creatorcontrib><creatorcontrib>Nater, E. A.</creatorcontrib><creatorcontrib>Wickman, T. R.</creatorcontrib><title>Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across the Superior National Forest in northern Minnesota, USA. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy type and density were the primary influences on THg and MeHg deposition. Highest THg and MeHg concentrations were measured beneath conifer canopies (THg mean = 19.02 ng L −1 ; MeHg mean = 0.28 ng L −1 ) followed by deciduous throughfall (THg mean = 12.53 ng L −1 ; MeHg mean = 0.19 ng L −1 ) then open precipitation (THg mean = 8.19 ng L −1 ; MeHg mean = 0.12 ng L −1 ). The greater efficiency of conifers at scavenging THg and MeHg from the atmosphere may increase the risk of mercury related water quality issues in conifer-dominated systems.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Aquatic environment</subject><subject>Atmospheric pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biological and medical sciences</subject><subject>Boreal forests</subject><subject>Canopies</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Coniferous trees</subject><subject>Conifers</subject><subject>Contamination</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Effects of pollution and side effects of pesticides on plants and fungi</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Herbivores</subject><subject>Hydrogeology</subject><subject>Mercury</subject><subject>Methylmercury</subject><subject>National forests</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Soil Science &amp; Conservation</subject><subject>Studies</subject><subject>Taiga</subject><subject>Throughfall</subject><subject>Water quality</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEuXjB7BZSLAFfHESOyMUCkgglrKwWI5zoalSu9jJ0H-PSyqQkPByg5_3udNLyBmwK2BMXAeAVLCEMZmUMs8S2CMTyAVP0pKn-2TCWFYmRSnKQ3IUwpLFV0oxIe9PtukGtAapa2i_QDpzHkNPp9q69YY6S-eu1x3VtqYv2C82XRzeDH5D73DtQtu3kWntd_Y2ZiM7Kk7IQaO7gKe7eUzeZvfz6WPy_PrwNL15TgwXRZ8YgLqqKwRTgixYUecCMyl0I2tT5LKpudSV1oWRrIEMJWrNK11jJZEJ4IIfk8vRu_buc4iL1aoNBrtOW3RDUCmknBeyjOD5H3DpBm_jbSplEkSRMx4hGCHjXQgeG7X27Ur7jQKmtlWrsWoVq1bbqhXEzMVOrIPRXeO1NW34CaaQCZ5lW3c6ciF-2Q_0vwf8L_8CcKqOTQ</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Witt, E. L.</creator><creator>Kolka, R. K.</creator><creator>Nater, E. A.</creator><creator>Wickman, T. R.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20090501</creationdate><title>Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest</title><author>Witt, E. L. ; Kolka, R. K. ; Nater, E. A. ; Wickman, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c11dbdbe1c918606d57e487af8dc658fd38abaa6c80f14e8eaa3badeb8e071373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Aquatic environment</topic><topic>Atmospheric pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biological and medical sciences</topic><topic>Boreal forests</topic><topic>Canopies</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Coniferous trees</topic><topic>Conifers</topic><topic>Contamination</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Effects of pollution and side effects of pesticides on plants and fungi</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Herbivores</topic><topic>Hydrogeology</topic><topic>Mercury</topic><topic>Methylmercury</topic><topic>National forests</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Soil Science &amp; Conservation</topic><topic>Studies</topic><topic>Taiga</topic><topic>Throughfall</topic><topic>Water quality</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witt, E. L.</creatorcontrib><creatorcontrib>Kolka, R. K.</creatorcontrib><creatorcontrib>Nater, E. A.</creatorcontrib><creatorcontrib>Wickman, T. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witt, E. L.</au><au>Kolka, R. K.</au><au>Nater, E. A.</au><au>Wickman, T. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>199</volume><issue>1-4</issue><spage>3</spage><epage>11</epage><pages>3-11</pages><issn>0049-6979</issn><eissn>1573-2932</eissn><coden>WAPLAC</coden><abstract>Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across the Superior National Forest in northern Minnesota, USA. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy type and density were the primary influences on THg and MeHg deposition. Highest THg and MeHg concentrations were measured beneath conifer canopies (THg mean = 19.02 ng L −1 ; MeHg mean = 0.28 ng L −1 ) followed by deciduous throughfall (THg mean = 12.53 ng L −1 ; MeHg mean = 0.19 ng L −1 ) then open precipitation (THg mean = 8.19 ng L −1 ; MeHg mean = 0.12 ng L −1 ). The greater efficiency of conifers at scavenging THg and MeHg from the atmosphere may increase the risk of mercury related water quality issues in conifer-dominated systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11270-008-9854-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2009-05, Vol.199 (1-4), p.3-11
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_21233689
source SpringerLink Journals
subjects Animal, plant and microbial ecology
Applied ecology
Applied sciences
Aquatic environment
Atmospheric pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Biological and medical sciences
Boreal forests
Canopies
Climate Change/Climate Change Impacts
Coniferous trees
Conifers
Contamination
Earth and Environmental Science
Ecotoxicology, biological effects of pollution
Effects of pollution and side effects of pesticides on plants and fungi
Environment
Environmental monitoring
Exact sciences and technology
Forests
Fundamental and applied biological sciences. Psychology
Herbivores
Hydrogeology
Mercury
Methylmercury
National forests
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Precipitation
Soil Science & Conservation
Studies
Taiga
Throughfall
Water quality
Water Quality/Water Pollution
title Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20Forest%20Canopy%20on%20Total%20and%20Methyl%20Mercury%20Deposition%20in%20the%20Boreal%20Forest&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Witt,%20E.%20L.&rft.date=2009-05-01&rft.volume=199&rft.issue=1-4&rft.spage=3&rft.epage=11&rft.pages=3-11&rft.issn=0049-6979&rft.eissn=1573-2932&rft.coden=WAPLAC&rft_id=info:doi/10.1007/s11270-008-9854-1&rft_dat=%3Cproquest_cross%3E21233689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208176503&rft_id=info:pmid/&rfr_iscdi=true