Adaptive genetic programming for steady-state process modeling
Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus support...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2004-11, Vol.28 (12), p.2779-2790 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2790 |
---|---|
container_issue | 12 |
container_start_page | 2779 |
container_title | Computers & chemical engineering |
container_volume | 28 |
creator | Grosman, Benyamin Lewin, Daniel R. |
description | Genetic programming is one of the computer algorithms in the family of
evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches. |
doi_str_mv | 10.1016/j.compchemeng.2004.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21229719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135404002613</els_id><sourcerecordid>21229719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8LClnBO4sRekKqKL6kSC8yWc74EV80HtluJf0-qMjAy3XDP--ruYeyWQ8aBV_fbDMd-wk_qaeiyHKDMQGUA_IwtuKyLtCxqcc4WAEqmvBDlJbsKYQsAeSnlgj2srJmiO1DS0UDRYTL5sfOm793QJe3okxDJ2O80RBPpuEQKIelHS7uZuGYXrdkFuvmdS_bx9Pi-fkk3b8-v69UmxUJATBUqqaziysq2blpLLYBQTdU0RSMESEOyEqUiQ5UlAixkjcIIaWqFOVZtsWR3p975gK89hah7F5B2OzPQuA8653muaq5mUJ1A9GMInlo9edcb_6056KMxvdV_jOmjMQ1Kz8bm7PqUpfmTgyOvAzoakKzzhFHb0f2j5Qd8FXwf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21229719</pqid></control><display><type>article</type><title>Adaptive genetic programming for steady-state process modeling</title><source>ScienceDirect</source><creator>Grosman, Benyamin ; Lewin, Daniel R.</creator><creatorcontrib>Grosman, Benyamin ; Lewin, Daniel R.</creatorcontrib><description>Genetic programming is one of the computer algorithms in the family of
evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2004.09.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Empirical process modeling ; Genetic programming</subject><ispartof>Computers & chemical engineering, 2004-11, Vol.28 (12), p.2779-2790</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</citedby><cites>FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2004.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Lewin, Daniel R.</creatorcontrib><title>Adaptive genetic programming for steady-state process modeling</title><title>Computers & chemical engineering</title><description>Genetic programming is one of the computer algorithms in the family of
evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.</description><subject>Empirical process modeling</subject><subject>Genetic programming</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8LClnBO4sRekKqKL6kSC8yWc74EV80HtluJf0-qMjAy3XDP--ruYeyWQ8aBV_fbDMd-wk_qaeiyHKDMQGUA_IwtuKyLtCxqcc4WAEqmvBDlJbsKYQsAeSnlgj2srJmiO1DS0UDRYTL5sfOm793QJe3okxDJ2O80RBPpuEQKIelHS7uZuGYXrdkFuvmdS_bx9Pi-fkk3b8-v69UmxUJATBUqqaziysq2blpLLYBQTdU0RSMESEOyEqUiQ5UlAixkjcIIaWqFOVZtsWR3p975gK89hah7F5B2OzPQuA8653muaq5mUJ1A9GMInlo9edcb_6056KMxvdV_jOmjMQ1Kz8bm7PqUpfmTgyOvAzoakKzzhFHb0f2j5Qd8FXwf</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>Grosman, Benyamin</creator><creator>Lewin, Daniel R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20041115</creationdate><title>Adaptive genetic programming for steady-state process modeling</title><author>Grosman, Benyamin ; Lewin, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Empirical process modeling</topic><topic>Genetic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Lewin, Daniel R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosman, Benyamin</au><au>Lewin, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive genetic programming for steady-state process modeling</atitle><jtitle>Computers & chemical engineering</jtitle><date>2004-11-15</date><risdate>2004</risdate><volume>28</volume><issue>12</issue><spage>2779</spage><epage>2790</epage><pages>2779-2790</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>Genetic programming is one of the computer algorithms in the family of
evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2004.09.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2004-11, Vol.28 (12), p.2779-2790 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_proquest_miscellaneous_21229719 |
source | ScienceDirect |
subjects | Empirical process modeling Genetic programming |
title | Adaptive genetic programming for steady-state process modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20genetic%20programming%20for%20steady-state%20process%20modeling&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Grosman,%20Benyamin&rft.date=2004-11-15&rft.volume=28&rft.issue=12&rft.spage=2779&rft.epage=2790&rft.pages=2779-2790&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2004.09.001&rft_dat=%3Cproquest_cross%3E21229719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21229719&rft_id=info:pmid/&rft_els_id=S0098135404002613&rfr_iscdi=true |