Adaptive genetic programming for steady-state process modeling

Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus support...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2004-11, Vol.28 (12), p.2779-2790
Hauptverfasser: Grosman, Benyamin, Lewin, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2790
container_issue 12
container_start_page 2779
container_title Computers & chemical engineering
container_volume 28
creator Grosman, Benyamin
Lewin, Daniel R.
description Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.
doi_str_mv 10.1016/j.compchemeng.2004.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21229719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135404002613</els_id><sourcerecordid>21229719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8LClnBO4sRekKqKL6kSC8yWc74EV80HtluJf0-qMjAy3XDP--ruYeyWQ8aBV_fbDMd-wk_qaeiyHKDMQGUA_IwtuKyLtCxqcc4WAEqmvBDlJbsKYQsAeSnlgj2srJmiO1DS0UDRYTL5sfOm793QJe3okxDJ2O80RBPpuEQKIelHS7uZuGYXrdkFuvmdS_bx9Pi-fkk3b8-v69UmxUJATBUqqaziysq2blpLLYBQTdU0RSMESEOyEqUiQ5UlAixkjcIIaWqFOVZtsWR3p975gK89hah7F5B2OzPQuA8653muaq5mUJ1A9GMInlo9edcb_6056KMxvdV_jOmjMQ1Kz8bm7PqUpfmTgyOvAzoakKzzhFHb0f2j5Qd8FXwf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21229719</pqid></control><display><type>article</type><title>Adaptive genetic programming for steady-state process modeling</title><source>ScienceDirect</source><creator>Grosman, Benyamin ; Lewin, Daniel R.</creator><creatorcontrib>Grosman, Benyamin ; Lewin, Daniel R.</creatorcontrib><description>Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2004.09.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Empirical process modeling ; Genetic programming</subject><ispartof>Computers &amp; chemical engineering, 2004-11, Vol.28 (12), p.2779-2790</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</citedby><cites>FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2004.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Lewin, Daniel R.</creatorcontrib><title>Adaptive genetic programming for steady-state process modeling</title><title>Computers &amp; chemical engineering</title><description>Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.</description><subject>Empirical process modeling</subject><subject>Genetic programming</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8LClnBO4sRekKqKL6kSC8yWc74EV80HtluJf0-qMjAy3XDP--ruYeyWQ8aBV_fbDMd-wk_qaeiyHKDMQGUA_IwtuKyLtCxqcc4WAEqmvBDlJbsKYQsAeSnlgj2srJmiO1DS0UDRYTL5sfOm793QJe3okxDJ2O80RBPpuEQKIelHS7uZuGYXrdkFuvmdS_bx9Pi-fkk3b8-v69UmxUJATBUqqaziysq2blpLLYBQTdU0RSMESEOyEqUiQ5UlAixkjcIIaWqFOVZtsWR3p975gK89hah7F5B2OzPQuA8653muaq5mUJ1A9GMInlo9edcb_6056KMxvdV_jOmjMQ1Kz8bm7PqUpfmTgyOvAzoakKzzhFHb0f2j5Qd8FXwf</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>Grosman, Benyamin</creator><creator>Lewin, Daniel R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20041115</creationdate><title>Adaptive genetic programming for steady-state process modeling</title><author>Grosman, Benyamin ; Lewin, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9c989d919d8f7bfdef0059b6bb3b5508ae86549eae6dee0c387c5a58a79c2c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Empirical process modeling</topic><topic>Genetic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Lewin, Daniel R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosman, Benyamin</au><au>Lewin, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive genetic programming for steady-state process modeling</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2004-11-15</date><risdate>2004</risdate><volume>28</volume><issue>12</issue><spage>2779</spage><epage>2790</epage><pages>2779-2790</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2004.09.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2004-11, Vol.28 (12), p.2779-2790
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_21229719
source ScienceDirect
subjects Empirical process modeling
Genetic programming
title Adaptive genetic programming for steady-state process modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20genetic%20programming%20for%20steady-state%20process%20modeling&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Grosman,%20Benyamin&rft.date=2004-11-15&rft.volume=28&rft.issue=12&rft.spage=2779&rft.epage=2790&rft.pages=2779-2790&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2004.09.001&rft_dat=%3Cproquest_cross%3E21229719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21229719&rft_id=info:pmid/&rft_els_id=S0098135404002613&rfr_iscdi=true