Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations

The goal of this article is to describe models to examine change over time with an outcome that represents a count, such as the number of alcoholic drinks per day. Common challenges encountered with this type of data are: (1) the outcome is discrete, may have a large number of zeroes, and may be ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Addictive behaviors 2019-07, Vol.94, p.4-15
Hauptverfasser: Grimm, Kevin J., Stegmann, Gabriela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 4
container_title Addictive behaviors
container_volume 94
creator Grimm, Kevin J.
Stegmann, Gabriela
description The goal of this article is to describe models to examine change over time with an outcome that represents a count, such as the number of alcoholic drinks per day. Common challenges encountered with this type of data are: (1) the outcome is discrete, may have a large number of zeroes, and may be overdispersed, (2) the data are clustered (multiple observations within each individual), (3) the researchers needs to carefully consider and choose an appropriate time metric, and (4) the researcher needs to identify both a proper individual (potentially nonlinear) change model and an appropriate distributional form that captures the properties of the data. In this article, we provide an overview of generalized linear models, generalized estimating equation models, and generalized latent variable (mixed-effects) models for longitudinal count outcomes focusing on the Poisson, negative binomial, zero-inflated, and hurdle distributions. We review common challenges and provide recommendations for identifying an appropriate change trajectory while determining an appropriate distributional form for the outcome (e.g., determining zero-inflation and overdispersion). We demonstrate the process of fitting and choosing a model with empirical longitudinal data on alcohol intake across adolescence collected as part of the National Longitudinal Survey of Youth 1997. •Modeling changes with a count outcome requires appropriate distribution and change model.•In depth discussion of distributions for counts and their associations with one another•Proposed method for determining both change model and appropriate distribution•Discussion of software options for estimating change models for count outcomes
doi_str_mv 10.1016/j.addbeh.2018.09.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2120752925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306460318310177</els_id><sourcerecordid>2120752925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-371ad22f66b5ce9764d4716a3471b300b4a129eae6357a999f9c8c065ed005573</originalsourceid><addsrcrecordid>eNp9kUGL1TAUhYMozpvRfyBScOOm9SZpkxcXwvDQURhxo-uQJrfzUtpkTFJFf70Z3-jChZsbOHzn3nAOIc8odBSoeDV3xrkRjx0Duu9AdVV8QHZ0L3krOJMPyQ44iLYXwM_Iec4zAGVy6B-TMw6cMclhR8aP0eHiw01jjybcYFOSmdGWmDzm5rsvx8bGLZTGBNf8xBRbH6bFFHRN3IqNK-bXzeFolgWrO__GElZ9xeBM8THkJ-TRZJaMT-_fC_Ll3dvPh_ft9aerD4fL69b2XJSWS2ocY5MQ42BRSdG7XlJheJ0jBxh7Q5lCg4IP0iilJmX3FsSADmAYJL8gL097b1P8umEuevXZ4rKYgHHLmlEGcmCKDRV98Q86xy2F-jvNWK8kq5mxSvUnyqaYc8JJ3ya_mvRDU9B3HehZnzrQdx1oULqK1fb8fvk2ruj-mv6EXoE3JwBrGt88Jp2tx2DR-Rpd0S76_1_4BRfOmQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249726032</pqid></control><display><type>article</type><title>Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Grimm, Kevin J. ; Stegmann, Gabriela</creator><creatorcontrib>Grimm, Kevin J. ; Stegmann, Gabriela</creatorcontrib><description>The goal of this article is to describe models to examine change over time with an outcome that represents a count, such as the number of alcoholic drinks per day. Common challenges encountered with this type of data are: (1) the outcome is discrete, may have a large number of zeroes, and may be overdispersed, (2) the data are clustered (multiple observations within each individual), (3) the researchers needs to carefully consider and choose an appropriate time metric, and (4) the researcher needs to identify both a proper individual (potentially nonlinear) change model and an appropriate distributional form that captures the properties of the data. In this article, we provide an overview of generalized linear models, generalized estimating equation models, and generalized latent variable (mixed-effects) models for longitudinal count outcomes focusing on the Poisson, negative binomial, zero-inflated, and hurdle distributions. We review common challenges and provide recommendations for identifying an appropriate change trajectory while determining an appropriate distributional form for the outcome (e.g., determining zero-inflation and overdispersion). We demonstrate the process of fitting and choosing a model with empirical longitudinal data on alcohol intake across adolescence collected as part of the National Longitudinal Survey of Youth 1997. •Modeling changes with a count outcome requires appropriate distribution and change model.•In depth discussion of distributions for counts and their associations with one another•Proposed method for determining both change model and appropriate distribution•Discussion of software options for estimating change models for count outcomes</description><identifier>ISSN: 0306-4603</identifier><identifier>EISSN: 1873-6327</identifier><identifier>DOI: 10.1016/j.addbeh.2018.09.016</identifier><identifier>PMID: 30322730</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adolescents ; Alcoholic beverages ; Generalized linear models ; Statistical models ; Teenagers</subject><ispartof>Addictive behaviors, 2019-07, Vol.94, p.4-15</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Pergamon Press Inc. Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-371ad22f66b5ce9764d4716a3471b300b4a129eae6357a999f9c8c065ed005573</citedby><cites>FETCH-LOGICAL-c436t-371ad22f66b5ce9764d4716a3471b300b4a129eae6357a999f9c8c065ed005573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.addbeh.2018.09.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30322730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, Kevin J.</creatorcontrib><creatorcontrib>Stegmann, Gabriela</creatorcontrib><title>Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations</title><title>Addictive behaviors</title><addtitle>Addict Behav</addtitle><description>The goal of this article is to describe models to examine change over time with an outcome that represents a count, such as the number of alcoholic drinks per day. Common challenges encountered with this type of data are: (1) the outcome is discrete, may have a large number of zeroes, and may be overdispersed, (2) the data are clustered (multiple observations within each individual), (3) the researchers needs to carefully consider and choose an appropriate time metric, and (4) the researcher needs to identify both a proper individual (potentially nonlinear) change model and an appropriate distributional form that captures the properties of the data. In this article, we provide an overview of generalized linear models, generalized estimating equation models, and generalized latent variable (mixed-effects) models for longitudinal count outcomes focusing on the Poisson, negative binomial, zero-inflated, and hurdle distributions. We review common challenges and provide recommendations for identifying an appropriate change trajectory while determining an appropriate distributional form for the outcome (e.g., determining zero-inflation and overdispersion). We demonstrate the process of fitting and choosing a model with empirical longitudinal data on alcohol intake across adolescence collected as part of the National Longitudinal Survey of Youth 1997. •Modeling changes with a count outcome requires appropriate distribution and change model.•In depth discussion of distributions for counts and their associations with one another•Proposed method for determining both change model and appropriate distribution•Discussion of software options for estimating change models for count outcomes</description><subject>Adolescents</subject><subject>Alcoholic beverages</subject><subject>Generalized linear models</subject><subject>Statistical models</subject><subject>Teenagers</subject><issn>0306-4603</issn><issn>1873-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUGL1TAUhYMozpvRfyBScOOm9SZpkxcXwvDQURhxo-uQJrfzUtpkTFJFf70Z3-jChZsbOHzn3nAOIc8odBSoeDV3xrkRjx0Duu9AdVV8QHZ0L3krOJMPyQ44iLYXwM_Iec4zAGVy6B-TMw6cMclhR8aP0eHiw01jjybcYFOSmdGWmDzm5rsvx8bGLZTGBNf8xBRbH6bFFHRN3IqNK-bXzeFolgWrO__GElZ9xeBM8THkJ-TRZJaMT-_fC_Ll3dvPh_ft9aerD4fL69b2XJSWS2ocY5MQ42BRSdG7XlJheJ0jBxh7Q5lCg4IP0iilJmX3FsSADmAYJL8gL097b1P8umEuevXZ4rKYgHHLmlEGcmCKDRV98Q86xy2F-jvNWK8kq5mxSvUnyqaYc8JJ3ya_mvRDU9B3HehZnzrQdx1oULqK1fb8fvk2ruj-mv6EXoE3JwBrGt88Jp2tx2DR-Rpd0S76_1_4BRfOmQI</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Grimm, Kevin J.</creator><creator>Stegmann, Gabriela</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>K7.</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201907</creationdate><title>Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations</title><author>Grimm, Kevin J. ; Stegmann, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-371ad22f66b5ce9764d4716a3471b300b4a129eae6357a999f9c8c065ed005573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescents</topic><topic>Alcoholic beverages</topic><topic>Generalized linear models</topic><topic>Statistical models</topic><topic>Teenagers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Kevin J.</creatorcontrib><creatorcontrib>Stegmann, Gabriela</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Addictive behaviors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Kevin J.</au><au>Stegmann, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations</atitle><jtitle>Addictive behaviors</jtitle><addtitle>Addict Behav</addtitle><date>2019-07</date><risdate>2019</risdate><volume>94</volume><spage>4</spage><epage>15</epage><pages>4-15</pages><issn>0306-4603</issn><eissn>1873-6327</eissn><abstract>The goal of this article is to describe models to examine change over time with an outcome that represents a count, such as the number of alcoholic drinks per day. Common challenges encountered with this type of data are: (1) the outcome is discrete, may have a large number of zeroes, and may be overdispersed, (2) the data are clustered (multiple observations within each individual), (3) the researchers needs to carefully consider and choose an appropriate time metric, and (4) the researcher needs to identify both a proper individual (potentially nonlinear) change model and an appropriate distributional form that captures the properties of the data. In this article, we provide an overview of generalized linear models, generalized estimating equation models, and generalized latent variable (mixed-effects) models for longitudinal count outcomes focusing on the Poisson, negative binomial, zero-inflated, and hurdle distributions. We review common challenges and provide recommendations for identifying an appropriate change trajectory while determining an appropriate distributional form for the outcome (e.g., determining zero-inflation and overdispersion). We demonstrate the process of fitting and choosing a model with empirical longitudinal data on alcohol intake across adolescence collected as part of the National Longitudinal Survey of Youth 1997. •Modeling changes with a count outcome requires appropriate distribution and change model.•In depth discussion of distributions for counts and their associations with one another•Proposed method for determining both change model and appropriate distribution•Discussion of software options for estimating change models for count outcomes</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30322730</pmid><doi>10.1016/j.addbeh.2018.09.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-4603
ispartof Addictive behaviors, 2019-07, Vol.94, p.4-15
issn 0306-4603
1873-6327
language eng
recordid cdi_proquest_miscellaneous_2120752925
source Access via ScienceDirect (Elsevier)
subjects Adolescents
Alcoholic beverages
Generalized linear models
Statistical models
Teenagers
title Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20change%20trajectories%20with%20count%20and%20zero-inflated%20outcomes:%20Challenges%20and%20recommendations&rft.jtitle=Addictive%20behaviors&rft.au=Grimm,%20Kevin%20J.&rft.date=2019-07&rft.volume=94&rft.spage=4&rft.epage=15&rft.pages=4-15&rft.issn=0306-4603&rft.eissn=1873-6327&rft_id=info:doi/10.1016/j.addbeh.2018.09.016&rft_dat=%3Cproquest_cross%3E2120752925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249726032&rft_id=info:pmid/30322730&rft_els_id=S0306460318310177&rfr_iscdi=true