A virtual reality method for digitally reconstructing traffic accidents from videos or still images

[Display omitted] •The perfect combination of real accident video analysis and 3D restoration technology with high accuracy.•The method is used with multi-source data from single image to vehicle CCTV videos.•The method in the manuscript is practical and can be popularized easily. With an increase i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forensic science international 2018-11, Vol.292, p.176-180
Hauptverfasser: Jiao, Peifeng, Miao, Qifeng, Zhang, Meichao, Zhao, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue
container_start_page 176
container_title Forensic science international
container_volume 292
creator Jiao, Peifeng
Miao, Qifeng
Zhang, Meichao
Zhao, Weidong
description [Display omitted] •The perfect combination of real accident video analysis and 3D restoration technology with high accuracy.•The method is used with multi-source data from single image to vehicle CCTV videos.•The method in the manuscript is practical and can be popularized easily. With an increase in the number of traffic accidents and enhanced attention to the rule of law, technical appraisement to reconstruct traffic accidents is attracting increasing attention. Accident videos are important aspects in identification; however, we cannot reconstruct an accident scene onsite using video for many reasons. In this paper, we introduce a computer-based virtual reality method that can digitally reconstruct a traffic accident. This method employs accident videos to perform a three-dimensional (3D) reconstruction of accident scenes. Using video screenshots, it constructs a model of humans and vehicles in 3D space to achieve the goal of dynamic restoration. The results indicate that this method has relatively high accuracy, requires little time and is easy to use. In this paper, we analyse the sources of errors for this method and summarize the application conditions.
doi_str_mv 10.1016/j.forsciint.2018.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2120749847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379073818308107</els_id><sourcerecordid>2120749847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-3746557dc59869304a40593e40ee84faa678ad339dd6e3a5e43e7c8ffa9f1fa93</originalsourceid><addsrcrecordid>eNqFkUuPFCEUhYnROO3oX1ASN26q5FUFLDuT8ZFM4kbXBOHS0qGKEahJ-t9Lp8dZuHEDC75z7uUchN5RMlJC54_HMeRSXYxrGxmhaiR6JFQ_QzuqJBtmpvhztCNc6oFIrq7Qq1qPhJBpYvNLdMUJZ1QKvkNujx9iaZtNuIBNsZ3wAu1X9rgPwD4eYrMpnfqjy2ttZXMtrgfcig0hOmydix7WVnEoeelWHnLFXVlbTAnHxR6gvkYvgk0V3jze1-jHp9vvN1-Gu2-fv97s7wYnGGsDl2KeJundpNWsORFWkElzEARAiWDtLJX1nGvvZ-B2AsFBOhWC1YH2g1-jDxff-5J_b1CbWWJ1kJJdIW_VMMqIFFoJ2dH3_6DHvJW1b3em1MSEnlin5IVyJddaIJj70r9UToYSc-7BHM1TD-bcgyHa9B668u2j__ZzAf-k-xt8B_YXAHogDxGK6S6wOvCxR92Mz_G_Q_4AwjKe4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128524952</pqid></control><display><type>article</type><title>A virtual reality method for digitally reconstructing traffic accidents from videos or still images</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Jiao, Peifeng ; Miao, Qifeng ; Zhang, Meichao ; Zhao, Weidong</creator><creatorcontrib>Jiao, Peifeng ; Miao, Qifeng ; Zhang, Meichao ; Zhao, Weidong</creatorcontrib><description>[Display omitted] •The perfect combination of real accident video analysis and 3D restoration technology with high accuracy.•The method is used with multi-source data from single image to vehicle CCTV videos.•The method in the manuscript is practical and can be popularized easily. With an increase in the number of traffic accidents and enhanced attention to the rule of law, technical appraisement to reconstruct traffic accidents is attracting increasing attention. Accident videos are important aspects in identification; however, we cannot reconstruct an accident scene onsite using video for many reasons. In this paper, we introduce a computer-based virtual reality method that can digitally reconstruct a traffic accident. This method employs accident videos to perform a three-dimensional (3D) reconstruction of accident scenes. Using video screenshots, it constructs a model of humans and vehicles in 3D space to achieve the goal of dynamic restoration. The results indicate that this method has relatively high accuracy, requires little time and is easy to use. In this paper, we analyse the sources of errors for this method and summarize the application conditions.</description><identifier>ISSN: 0379-0738</identifier><identifier>EISSN: 1872-6283</identifier><identifier>DOI: 10.1016/j.forsciint.2018.09.019</identifier><identifier>PMID: 30321743</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Accidents, Traffic ; Accuracy ; Computer applications ; Computer Simulation ; Data collection ; Error ; Experiments ; Forensic sciences ; Humans ; Identification ; Image reconstruction ; Location restoration ; Methods ; NMR ; Nuclear magnetic resonance ; Registration ; Scanners ; Software ; Traffic accidents ; Traffic accidents &amp; safety ; Vehicles ; Video ; Virtual Reality</subject><ispartof>Forensic science international, 2018-11, Vol.292, p.176-180</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-3746557dc59869304a40593e40ee84faa678ad339dd6e3a5e43e7c8ffa9f1fa93</citedby><cites>FETCH-LOGICAL-c422t-3746557dc59869304a40593e40ee84faa678ad339dd6e3a5e43e7c8ffa9f1fa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2128524952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978,64366,64368,64370,72220</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30321743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Peifeng</creatorcontrib><creatorcontrib>Miao, Qifeng</creatorcontrib><creatorcontrib>Zhang, Meichao</creatorcontrib><creatorcontrib>Zhao, Weidong</creatorcontrib><title>A virtual reality method for digitally reconstructing traffic accidents from videos or still images</title><title>Forensic science international</title><addtitle>Forensic Sci Int</addtitle><description>[Display omitted] •The perfect combination of real accident video analysis and 3D restoration technology with high accuracy.•The method is used with multi-source data from single image to vehicle CCTV videos.•The method in the manuscript is practical and can be popularized easily. With an increase in the number of traffic accidents and enhanced attention to the rule of law, technical appraisement to reconstruct traffic accidents is attracting increasing attention. Accident videos are important aspects in identification; however, we cannot reconstruct an accident scene onsite using video for many reasons. In this paper, we introduce a computer-based virtual reality method that can digitally reconstruct a traffic accident. This method employs accident videos to perform a three-dimensional (3D) reconstruction of accident scenes. Using video screenshots, it constructs a model of humans and vehicles in 3D space to achieve the goal of dynamic restoration. The results indicate that this method has relatively high accuracy, requires little time and is easy to use. In this paper, we analyse the sources of errors for this method and summarize the application conditions.</description><subject>Accidents, Traffic</subject><subject>Accuracy</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Data collection</subject><subject>Error</subject><subject>Experiments</subject><subject>Forensic sciences</subject><subject>Humans</subject><subject>Identification</subject><subject>Image reconstruction</subject><subject>Location restoration</subject><subject>Methods</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Registration</subject><subject>Scanners</subject><subject>Software</subject><subject>Traffic accidents</subject><subject>Traffic accidents &amp; safety</subject><subject>Vehicles</subject><subject>Video</subject><subject>Virtual Reality</subject><issn>0379-0738</issn><issn>1872-6283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUuPFCEUhYnROO3oX1ASN26q5FUFLDuT8ZFM4kbXBOHS0qGKEahJ-t9Lp8dZuHEDC75z7uUchN5RMlJC54_HMeRSXYxrGxmhaiR6JFQ_QzuqJBtmpvhztCNc6oFIrq7Qq1qPhJBpYvNLdMUJZ1QKvkNujx9iaZtNuIBNsZ3wAu1X9rgPwD4eYrMpnfqjy2ttZXMtrgfcig0hOmydix7WVnEoeelWHnLFXVlbTAnHxR6gvkYvgk0V3jze1-jHp9vvN1-Gu2-fv97s7wYnGGsDl2KeJundpNWsORFWkElzEARAiWDtLJX1nGvvZ-B2AsFBOhWC1YH2g1-jDxff-5J_b1CbWWJ1kJJdIW_VMMqIFFoJ2dH3_6DHvJW1b3em1MSEnlin5IVyJddaIJj70r9UToYSc-7BHM1TD-bcgyHa9B668u2j__ZzAf-k-xt8B_YXAHogDxGK6S6wOvCxR92Mz_G_Q_4AwjKe4Q</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jiao, Peifeng</creator><creator>Miao, Qifeng</creator><creator>Zhang, Meichao</creator><creator>Zhao, Weidong</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20181101</creationdate><title>A virtual reality method for digitally reconstructing traffic accidents from videos or still images</title><author>Jiao, Peifeng ; Miao, Qifeng ; Zhang, Meichao ; Zhao, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-3746557dc59869304a40593e40ee84faa678ad339dd6e3a5e43e7c8ffa9f1fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accidents, Traffic</topic><topic>Accuracy</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Data collection</topic><topic>Error</topic><topic>Experiments</topic><topic>Forensic sciences</topic><topic>Humans</topic><topic>Identification</topic><topic>Image reconstruction</topic><topic>Location restoration</topic><topic>Methods</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Registration</topic><topic>Scanners</topic><topic>Software</topic><topic>Traffic accidents</topic><topic>Traffic accidents &amp; safety</topic><topic>Vehicles</topic><topic>Video</topic><topic>Virtual Reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Peifeng</creatorcontrib><creatorcontrib>Miao, Qifeng</creatorcontrib><creatorcontrib>Zhang, Meichao</creatorcontrib><creatorcontrib>Zhao, Weidong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Forensic science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Peifeng</au><au>Miao, Qifeng</au><au>Zhang, Meichao</au><au>Zhao, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A virtual reality method for digitally reconstructing traffic accidents from videos or still images</atitle><jtitle>Forensic science international</jtitle><addtitle>Forensic Sci Int</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>292</volume><spage>176</spage><epage>180</epage><pages>176-180</pages><issn>0379-0738</issn><eissn>1872-6283</eissn><abstract>[Display omitted] •The perfect combination of real accident video analysis and 3D restoration technology with high accuracy.•The method is used with multi-source data from single image to vehicle CCTV videos.•The method in the manuscript is practical and can be popularized easily. With an increase in the number of traffic accidents and enhanced attention to the rule of law, technical appraisement to reconstruct traffic accidents is attracting increasing attention. Accident videos are important aspects in identification; however, we cannot reconstruct an accident scene onsite using video for many reasons. In this paper, we introduce a computer-based virtual reality method that can digitally reconstruct a traffic accident. This method employs accident videos to perform a three-dimensional (3D) reconstruction of accident scenes. Using video screenshots, it constructs a model of humans and vehicles in 3D space to achieve the goal of dynamic restoration. The results indicate that this method has relatively high accuracy, requires little time and is easy to use. In this paper, we analyse the sources of errors for this method and summarize the application conditions.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>30321743</pmid><doi>10.1016/j.forsciint.2018.09.019</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-0738
ispartof Forensic science international, 2018-11, Vol.292, p.176-180
issn 0379-0738
1872-6283
language eng
recordid cdi_proquest_miscellaneous_2120749847
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Accidents, Traffic
Accuracy
Computer applications
Computer Simulation
Data collection
Error
Experiments
Forensic sciences
Humans
Identification
Image reconstruction
Location restoration
Methods
NMR
Nuclear magnetic resonance
Registration
Scanners
Software
Traffic accidents
Traffic accidents & safety
Vehicles
Video
Virtual Reality
title A virtual reality method for digitally reconstructing traffic accidents from videos or still images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20virtual%20reality%20method%20for%20digitally%20reconstructing%20traffic%20accidents%20from%20videos%20or%20still%20images&rft.jtitle=Forensic%20science%20international&rft.au=Jiao,%20Peifeng&rft.date=2018-11-01&rft.volume=292&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.issn=0379-0738&rft.eissn=1872-6283&rft_id=info:doi/10.1016/j.forsciint.2018.09.019&rft_dat=%3Cproquest_cross%3E2120749847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128524952&rft_id=info:pmid/30321743&rft_els_id=S0379073818308107&rfr_iscdi=true