Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney

Background The role of Na + -dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na + -dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Anoth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental nephrology 2019-03, Vol.23 (3), p.313-324
Hauptverfasser: Fujii, Toru, Shiozaki, Yuji, Segawa, Hiroko, Nishiguchi, Shiori, Hanazaki, Ai, Noguchi, Miwa, Kirino, Ruri, Sasaki, Sumire, Tanifuji, Kazuya, Koike, Megumi, Yokoyama, Mizuki, Arima, Yuki, Kaneko, Ichiro, Tatsumi, Sawako, Ito, Mikiko, Miyamoto, Ken-ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 3
container_start_page 313
container_title Clinical and experimental nephrology
container_volume 23
creator Fujii, Toru
Shiozaki, Yuji
Segawa, Hiroko
Nishiguchi, Shiori
Hanazaki, Ai
Noguchi, Miwa
Kirino, Ruri
Sasaki, Sumire
Tanifuji, Kazuya
Koike, Megumi
Yokoyama, Mizuki
Arima, Yuki
Kaneko, Ichiro
Tatsumi, Sawako
Ito, Mikiko
Miyamoto, Ken-ichi
description Background The role of Na + -dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na + -dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na + -dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. Methods We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. Results We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na + /H + exchanger regulatory factor 1 expression in OK cells. Conclusion These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.
doi_str_mv 10.1007/s10157-018-1653-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2120206174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120206174</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-99fde6f92e7fb031a1625d9a5389270be5181eef9cb61bd88c22e2757b5de3863</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxa0KVOi2H6CXyhKXXgz-E8fxESFKV0ItB3q2nPWENU3sYDuH_fZ4tYuQOL2R5qc3o_cQ-s7oJaNUXWVGmVSEso6wVgrSfELnrBGKKKX1SZ1FwwlTkp2hLzk_U0o7LfVndCaoYKpp1Dkq18GOu-wzjgOOc8x5mfB_7wLs8B_74Ml6vcE5Or9MxMEMwUEoeN7GPG9tAVySDXmOqUDCJeKl7lMuNjj84PG26ujDE_YBb5fJhqPzV3Q62DHDt6Ou0L9ft483v8n937v1zfU9mTnjhWg9OGgHzUENff3YspZLp60UneaK9iBZxwAGvelb1ruu23AOXEnVSweia8UK_Tz4zim-LJCLmXzewDjaAHHJpl6hnLY1iopefECf45JqNnuKadpQVUNboR9HaukncGZOfrJpZ97yrAA_ALmuwhOkdxtGzb40cyjN1NLMvjTTiFcCvYgT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119040730</pqid></control><display><type>article</type><title>Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fujii, Toru ; Shiozaki, Yuji ; Segawa, Hiroko ; Nishiguchi, Shiori ; Hanazaki, Ai ; Noguchi, Miwa ; Kirino, Ruri ; Sasaki, Sumire ; Tanifuji, Kazuya ; Koike, Megumi ; Yokoyama, Mizuki ; Arima, Yuki ; Kaneko, Ichiro ; Tatsumi, Sawako ; Ito, Mikiko ; Miyamoto, Ken-ichi</creator><creatorcontrib>Fujii, Toru ; Shiozaki, Yuji ; Segawa, Hiroko ; Nishiguchi, Shiori ; Hanazaki, Ai ; Noguchi, Miwa ; Kirino, Ruri ; Sasaki, Sumire ; Tanifuji, Kazuya ; Koike, Megumi ; Yokoyama, Mizuki ; Arima, Yuki ; Kaneko, Ichiro ; Tatsumi, Sawako ; Ito, Mikiko ; Miyamoto, Ken-ichi</creatorcontrib><description>Background The role of Na + -dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na + -dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na + -dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. Methods We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. Results We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na + /H + exchanger regulatory factor 1 expression in OK cells. Conclusion These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.</description><identifier>ISSN: 1342-1751</identifier><identifier>EISSN: 1437-7799</identifier><identifier>DOI: 10.1007/s10157-018-1653-4</identifier><identifier>PMID: 30317447</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Animals ; Antibodies ; Cells, Cultured ; Clonal deletion ; Cloning ; Familial Hypophosphatemic Rickets - etiology ; Humans ; Hypercalciuria ; Hypercalciuria - etiology ; Hypophosphatemia ; Kidney - metabolism ; Kidneys ; Medicine ; Medicine &amp; Public Health ; Mice ; mRNA ; Na+/H+-exchanging ATPase ; Nephrology ; Opossums ; Original Article ; Phosphate Transport Proteins - physiology ; Phosphate transporter ; Phosphates - metabolism ; Proteins ; Reabsorption ; Rickets ; RNA, Small Interfering - genetics ; RNA-mediated interference ; siRNA ; Sodium ; Sodium-Phosphate Cotransporter Proteins, Type IIc - physiology ; Urology ; Xenopus laevis</subject><ispartof>Clinical and experimental nephrology, 2019-03, Vol.23 (3), p.313-324</ispartof><rights>Japanese Society of Nephrology 2018</rights><rights>Clinical and Experimental Nephrology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-99fde6f92e7fb031a1625d9a5389270be5181eef9cb61bd88c22e2757b5de3863</cites><orcidid>0000-0002-0905-246X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10157-018-1653-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10157-018-1653-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30317447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujii, Toru</creatorcontrib><creatorcontrib>Shiozaki, Yuji</creatorcontrib><creatorcontrib>Segawa, Hiroko</creatorcontrib><creatorcontrib>Nishiguchi, Shiori</creatorcontrib><creatorcontrib>Hanazaki, Ai</creatorcontrib><creatorcontrib>Noguchi, Miwa</creatorcontrib><creatorcontrib>Kirino, Ruri</creatorcontrib><creatorcontrib>Sasaki, Sumire</creatorcontrib><creatorcontrib>Tanifuji, Kazuya</creatorcontrib><creatorcontrib>Koike, Megumi</creatorcontrib><creatorcontrib>Yokoyama, Mizuki</creatorcontrib><creatorcontrib>Arima, Yuki</creatorcontrib><creatorcontrib>Kaneko, Ichiro</creatorcontrib><creatorcontrib>Tatsumi, Sawako</creatorcontrib><creatorcontrib>Ito, Mikiko</creatorcontrib><creatorcontrib>Miyamoto, Ken-ichi</creatorcontrib><title>Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney</title><title>Clinical and experimental nephrology</title><addtitle>Clin Exp Nephrol</addtitle><addtitle>Clin Exp Nephrol</addtitle><description>Background The role of Na + -dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na + -dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na + -dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. Methods We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. Results We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na + /H + exchanger regulatory factor 1 expression in OK cells. Conclusion These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Cloning</subject><subject>Familial Hypophosphatemic Rickets - etiology</subject><subject>Humans</subject><subject>Hypercalciuria</subject><subject>Hypercalciuria - etiology</subject><subject>Hypophosphatemia</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>mRNA</subject><subject>Na+/H+-exchanging ATPase</subject><subject>Nephrology</subject><subject>Opossums</subject><subject>Original Article</subject><subject>Phosphate Transport Proteins - physiology</subject><subject>Phosphate transporter</subject><subject>Phosphates - metabolism</subject><subject>Proteins</subject><subject>Reabsorption</subject><subject>Rickets</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>Sodium</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIc - physiology</subject><subject>Urology</subject><subject>Xenopus laevis</subject><issn>1342-1751</issn><issn>1437-7799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkU9P3DAQxa0KVOi2H6CXyhKXXgz-E8fxESFKV0ItB3q2nPWENU3sYDuH_fZ4tYuQOL2R5qc3o_cQ-s7oJaNUXWVGmVSEso6wVgrSfELnrBGKKKX1SZ1FwwlTkp2hLzk_U0o7LfVndCaoYKpp1Dkq18GOu-wzjgOOc8x5mfB_7wLs8B_74Ml6vcE5Or9MxMEMwUEoeN7GPG9tAVySDXmOqUDCJeKl7lMuNjj84PG26ujDE_YBb5fJhqPzV3Q62DHDt6Ou0L9ft483v8n937v1zfU9mTnjhWg9OGgHzUENff3YspZLp60UneaK9iBZxwAGvelb1ruu23AOXEnVSweia8UK_Tz4zim-LJCLmXzewDjaAHHJpl6hnLY1iopefECf45JqNnuKadpQVUNboR9HaukncGZOfrJpZ97yrAA_ALmuwhOkdxtGzb40cyjN1NLMvjTTiFcCvYgT</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Fujii, Toru</creator><creator>Shiozaki, Yuji</creator><creator>Segawa, Hiroko</creator><creator>Nishiguchi, Shiori</creator><creator>Hanazaki, Ai</creator><creator>Noguchi, Miwa</creator><creator>Kirino, Ruri</creator><creator>Sasaki, Sumire</creator><creator>Tanifuji, Kazuya</creator><creator>Koike, Megumi</creator><creator>Yokoyama, Mizuki</creator><creator>Arima, Yuki</creator><creator>Kaneko, Ichiro</creator><creator>Tatsumi, Sawako</creator><creator>Ito, Mikiko</creator><creator>Miyamoto, Ken-ichi</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0905-246X</orcidid></search><sort><creationdate>20190301</creationdate><title>Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney</title><author>Fujii, Toru ; Shiozaki, Yuji ; Segawa, Hiroko ; Nishiguchi, Shiori ; Hanazaki, Ai ; Noguchi, Miwa ; Kirino, Ruri ; Sasaki, Sumire ; Tanifuji, Kazuya ; Koike, Megumi ; Yokoyama, Mizuki ; Arima, Yuki ; Kaneko, Ichiro ; Tatsumi, Sawako ; Ito, Mikiko ; Miyamoto, Ken-ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-99fde6f92e7fb031a1625d9a5389270be5181eef9cb61bd88c22e2757b5de3863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Cloning</topic><topic>Familial Hypophosphatemic Rickets - etiology</topic><topic>Humans</topic><topic>Hypercalciuria</topic><topic>Hypercalciuria - etiology</topic><topic>Hypophosphatemia</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>mRNA</topic><topic>Na+/H+-exchanging ATPase</topic><topic>Nephrology</topic><topic>Opossums</topic><topic>Original Article</topic><topic>Phosphate Transport Proteins - physiology</topic><topic>Phosphate transporter</topic><topic>Phosphates - metabolism</topic><topic>Proteins</topic><topic>Reabsorption</topic><topic>Rickets</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>Sodium</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIc - physiology</topic><topic>Urology</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujii, Toru</creatorcontrib><creatorcontrib>Shiozaki, Yuji</creatorcontrib><creatorcontrib>Segawa, Hiroko</creatorcontrib><creatorcontrib>Nishiguchi, Shiori</creatorcontrib><creatorcontrib>Hanazaki, Ai</creatorcontrib><creatorcontrib>Noguchi, Miwa</creatorcontrib><creatorcontrib>Kirino, Ruri</creatorcontrib><creatorcontrib>Sasaki, Sumire</creatorcontrib><creatorcontrib>Tanifuji, Kazuya</creatorcontrib><creatorcontrib>Koike, Megumi</creatorcontrib><creatorcontrib>Yokoyama, Mizuki</creatorcontrib><creatorcontrib>Arima, Yuki</creatorcontrib><creatorcontrib>Kaneko, Ichiro</creatorcontrib><creatorcontrib>Tatsumi, Sawako</creatorcontrib><creatorcontrib>Ito, Mikiko</creatorcontrib><creatorcontrib>Miyamoto, Ken-ichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujii, Toru</au><au>Shiozaki, Yuji</au><au>Segawa, Hiroko</au><au>Nishiguchi, Shiori</au><au>Hanazaki, Ai</au><au>Noguchi, Miwa</au><au>Kirino, Ruri</au><au>Sasaki, Sumire</au><au>Tanifuji, Kazuya</au><au>Koike, Megumi</au><au>Yokoyama, Mizuki</au><au>Arima, Yuki</au><au>Kaneko, Ichiro</au><au>Tatsumi, Sawako</au><au>Ito, Mikiko</au><au>Miyamoto, Ken-ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney</atitle><jtitle>Clinical and experimental nephrology</jtitle><stitle>Clin Exp Nephrol</stitle><addtitle>Clin Exp Nephrol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>23</volume><issue>3</issue><spage>313</spage><epage>324</epage><pages>313-324</pages><issn>1342-1751</issn><eissn>1437-7799</eissn><abstract>Background The role of Na + -dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na + -dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na + -dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. Methods We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. Results We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na + /H + exchanger regulatory factor 1 expression in OK cells. Conclusion These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>30317447</pmid><doi>10.1007/s10157-018-1653-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0905-246X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1342-1751
ispartof Clinical and experimental nephrology, 2019-03, Vol.23 (3), p.313-324
issn 1342-1751
1437-7799
language eng
recordid cdi_proquest_miscellaneous_2120206174
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Antibodies
Cells, Cultured
Clonal deletion
Cloning
Familial Hypophosphatemic Rickets - etiology
Humans
Hypercalciuria
Hypercalciuria - etiology
Hypophosphatemia
Kidney - metabolism
Kidneys
Medicine
Medicine & Public Health
Mice
mRNA
Na+/H+-exchanging ATPase
Nephrology
Opossums
Original Article
Phosphate Transport Proteins - physiology
Phosphate transporter
Phosphates - metabolism
Proteins
Reabsorption
Rickets
RNA, Small Interfering - genetics
RNA-mediated interference
siRNA
Sodium
Sodium-Phosphate Cotransporter Proteins, Type IIc - physiology
Urology
Xenopus laevis
title Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20opossum%20kidney%20NaPi-IIc%20sodium-dependent%20phosphate%20transporter%20to%20understand%20Pi%20handling%20in%20human%20kidney&rft.jtitle=Clinical%20and%20experimental%20nephrology&rft.au=Fujii,%20Toru&rft.date=2019-03-01&rft.volume=23&rft.issue=3&rft.spage=313&rft.epage=324&rft.pages=313-324&rft.issn=1342-1751&rft.eissn=1437-7799&rft_id=info:doi/10.1007/s10157-018-1653-4&rft_dat=%3Cproquest_pubme%3E2120206174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119040730&rft_id=info:pmid/30317447&rfr_iscdi=true