Correlated gamma frailty models for bivariate survival time data

Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. In recent years, numerous shared and correlated frailty models have been proposed in the survival literature allowing for different association structures and frailty distribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2019-11, Vol.28 (10-11), p.3437-3450
Hauptverfasser: Martins, Adelino, Aerts, Marc, Hens, Niel, Wienke, Andreas, Abrams, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3450
container_issue 10-11
container_start_page 3437
container_title Statistical methods in medical research
container_volume 28
creator Martins, Adelino
Aerts, Marc
Hens, Niel
Wienke, Andreas
Abrams, Steven
description Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. In recent years, numerous shared and correlated frailty models have been proposed in the survival literature allowing for different association structures and frailty distributions. A bivariate correlated gamma frailty model with an additive decomposition of the frailty variables into a sum of independent gamma components was introduced before. Although this model has a very convenient closed-form representation for the bivariate survival function, the correlation among event- or subject-specific frailties is bounded above which becomes a severe limitation when the values of the two frailty variances differ substantially. In this article, we review existing correlated gamma frailty models and propose novel ones based on bivariate gamma frailty distributions. Such models are found to be useful for the analysis of bivariate survival time data regardless of the censoring type involved. The frailty methodology was applied to right-censored and left-truncated Danish twins mortality data and serological survey current status data on varicella zoster virus and parvovirus B19 infections in Belgium. From our analyses, it has been shown that fitting more flexible correlated gamma frailty models in terms of the imposed association and correlation structure outperforms existing frailty models including the one with an additive decomposition.
doi_str_mv 10.1177/0962280218803127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2120202614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280218803127</sage_id><sourcerecordid>2120202614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4421cfc902c779ab0be5d3632d8f97bbacfa1c4c1d9c1d55d280b68cbb31f14a3</originalsourceid><addsrcrecordid>eNp1kMtLw0AQxhdRbK3ePcmCFy_R2UezyU0pvqDgRc9h9lVSkqbuJgX_e7e0KhRkGIZhfvPN8BFyyeCWMaXuoMw5L4CzogDBuDoiYyaVykAIeUzG23G2nY_IWYxLAFAgy1MyEokuQYoxuZ91IbgGe2fpAtsWqQ9YN_0XbTvrmkh9F6iuNxjqxNA4hE1qGtrXraMWezwnJx6b6C72dUI-nh7fZy_Z_O35dfYwz4zIp30mJWfGmxK4UapEDdpNrcgFt4UvldZoPDIjDbNlyunUprd1XhitBfNMopiQm53uOnSfg4t91dbRuKbBleuGWHHGIUXOZEKvD9BlN4RV-q5KbhW5FLLgiYIdZUIXY3C-Woe6xfBVMai27laH7qaVq73woFtnfxd-7ExAtgMiLtzf1X8FvwF2y4CN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288643482</pqid></control><display><type>article</type><title>Correlated gamma frailty models for bivariate survival time data</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Martins, Adelino ; Aerts, Marc ; Hens, Niel ; Wienke, Andreas ; Abrams, Steven</creator><creatorcontrib>Martins, Adelino ; Aerts, Marc ; Hens, Niel ; Wienke, Andreas ; Abrams, Steven</creatorcontrib><description>Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. In recent years, numerous shared and correlated frailty models have been proposed in the survival literature allowing for different association structures and frailty distributions. A bivariate correlated gamma frailty model with an additive decomposition of the frailty variables into a sum of independent gamma components was introduced before. Although this model has a very convenient closed-form representation for the bivariate survival function, the correlation among event- or subject-specific frailties is bounded above which becomes a severe limitation when the values of the two frailty variances differ substantially. In this article, we review existing correlated gamma frailty models and propose novel ones based on bivariate gamma frailty distributions. Such models are found to be useful for the analysis of bivariate survival time data regardless of the censoring type involved. The frailty methodology was applied to right-censored and left-truncated Danish twins mortality data and serological survey current status data on varicella zoster virus and parvovirus B19 infections in Belgium. From our analyses, it has been shown that fitting more flexible correlated gamma frailty models in terms of the imposed association and correlation structure outperforms existing frailty models including the one with an additive decomposition.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280218803127</identifier><identifier>PMID: 30319043</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Additives ; Associations ; Belgium - epidemiology ; Bivariate analysis ; Chickenpox - blood ; Chickenpox - epidemiology ; Decomposition ; Denmark - epidemiology ; Female ; Frailty ; Humans ; Male ; Models, Statistical ; Mortality - trends ; Multivariate Analysis ; Parvoviridae Infections - blood ; Parvoviridae Infections - epidemiology ; Parvovirus B19, Human ; Survival ; Survival Analysis ; Twin Studies as Topic ; Twins ; Viruses</subject><ispartof>Statistical methods in medical research, 2019-11, Vol.28 (10-11), p.3437-3450</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-4421cfc902c779ab0be5d3632d8f97bbacfa1c4c1d9c1d55d280b68cbb31f14a3</citedby><cites>FETCH-LOGICAL-c365t-4421cfc902c779ab0be5d3632d8f97bbacfa1c4c1d9c1d55d280b68cbb31f14a3</cites><orcidid>0000-0002-1803-9072 ; 0000-0002-4565-4572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280218803127$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280218803127$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,30999,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30319043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Adelino</creatorcontrib><creatorcontrib>Aerts, Marc</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><creatorcontrib>Wienke, Andreas</creatorcontrib><creatorcontrib>Abrams, Steven</creatorcontrib><title>Correlated gamma frailty models for bivariate survival time data</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. In recent years, numerous shared and correlated frailty models have been proposed in the survival literature allowing for different association structures and frailty distributions. A bivariate correlated gamma frailty model with an additive decomposition of the frailty variables into a sum of independent gamma components was introduced before. Although this model has a very convenient closed-form representation for the bivariate survival function, the correlation among event- or subject-specific frailties is bounded above which becomes a severe limitation when the values of the two frailty variances differ substantially. In this article, we review existing correlated gamma frailty models and propose novel ones based on bivariate gamma frailty distributions. Such models are found to be useful for the analysis of bivariate survival time data regardless of the censoring type involved. The frailty methodology was applied to right-censored and left-truncated Danish twins mortality data and serological survey current status data on varicella zoster virus and parvovirus B19 infections in Belgium. From our analyses, it has been shown that fitting more flexible correlated gamma frailty models in terms of the imposed association and correlation structure outperforms existing frailty models including the one with an additive decomposition.</description><subject>Additives</subject><subject>Associations</subject><subject>Belgium - epidemiology</subject><subject>Bivariate analysis</subject><subject>Chickenpox - blood</subject><subject>Chickenpox - epidemiology</subject><subject>Decomposition</subject><subject>Denmark - epidemiology</subject><subject>Female</subject><subject>Frailty</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>Mortality - trends</subject><subject>Multivariate Analysis</subject><subject>Parvoviridae Infections - blood</subject><subject>Parvoviridae Infections - epidemiology</subject><subject>Parvovirus B19, Human</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Twin Studies as Topic</subject><subject>Twins</subject><subject>Viruses</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kMtLw0AQxhdRbK3ePcmCFy_R2UezyU0pvqDgRc9h9lVSkqbuJgX_e7e0KhRkGIZhfvPN8BFyyeCWMaXuoMw5L4CzogDBuDoiYyaVykAIeUzG23G2nY_IWYxLAFAgy1MyEokuQYoxuZ91IbgGe2fpAtsWqQ9YN_0XbTvrmkh9F6iuNxjqxNA4hE1qGtrXraMWezwnJx6b6C72dUI-nh7fZy_Z_O35dfYwz4zIp30mJWfGmxK4UapEDdpNrcgFt4UvldZoPDIjDbNlyunUprd1XhitBfNMopiQm53uOnSfg4t91dbRuKbBleuGWHHGIUXOZEKvD9BlN4RV-q5KbhW5FLLgiYIdZUIXY3C-Woe6xfBVMai27laH7qaVq73woFtnfxd-7ExAtgMiLtzf1X8FvwF2y4CN</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Martins, Adelino</creator><creator>Aerts, Marc</creator><creator>Hens, Niel</creator><creator>Wienke, Andreas</creator><creator>Abrams, Steven</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1803-9072</orcidid><orcidid>https://orcid.org/0000-0002-4565-4572</orcidid></search><sort><creationdate>20191101</creationdate><title>Correlated gamma frailty models for bivariate survival time data</title><author>Martins, Adelino ; Aerts, Marc ; Hens, Niel ; Wienke, Andreas ; Abrams, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4421cfc902c779ab0be5d3632d8f97bbacfa1c4c1d9c1d55d280b68cbb31f14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additives</topic><topic>Associations</topic><topic>Belgium - epidemiology</topic><topic>Bivariate analysis</topic><topic>Chickenpox - blood</topic><topic>Chickenpox - epidemiology</topic><topic>Decomposition</topic><topic>Denmark - epidemiology</topic><topic>Female</topic><topic>Frailty</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>Mortality - trends</topic><topic>Multivariate Analysis</topic><topic>Parvoviridae Infections - blood</topic><topic>Parvoviridae Infections - epidemiology</topic><topic>Parvovirus B19, Human</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Twin Studies as Topic</topic><topic>Twins</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Adelino</creatorcontrib><creatorcontrib>Aerts, Marc</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><creatorcontrib>Wienke, Andreas</creatorcontrib><creatorcontrib>Abrams, Steven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Adelino</au><au>Aerts, Marc</au><au>Hens, Niel</au><au>Wienke, Andreas</au><au>Abrams, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated gamma frailty models for bivariate survival time data</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>28</volume><issue>10-11</issue><spage>3437</spage><epage>3450</epage><pages>3437-3450</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Frailty models have been developed to quantify both heterogeneity as well as association in multivariate time-to-event data. In recent years, numerous shared and correlated frailty models have been proposed in the survival literature allowing for different association structures and frailty distributions. A bivariate correlated gamma frailty model with an additive decomposition of the frailty variables into a sum of independent gamma components was introduced before. Although this model has a very convenient closed-form representation for the bivariate survival function, the correlation among event- or subject-specific frailties is bounded above which becomes a severe limitation when the values of the two frailty variances differ substantially. In this article, we review existing correlated gamma frailty models and propose novel ones based on bivariate gamma frailty distributions. Such models are found to be useful for the analysis of bivariate survival time data regardless of the censoring type involved. The frailty methodology was applied to right-censored and left-truncated Danish twins mortality data and serological survey current status data on varicella zoster virus and parvovirus B19 infections in Belgium. From our analyses, it has been shown that fitting more flexible correlated gamma frailty models in terms of the imposed association and correlation structure outperforms existing frailty models including the one with an additive decomposition.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30319043</pmid><doi>10.1177/0962280218803127</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1803-9072</orcidid><orcidid>https://orcid.org/0000-0002-4565-4572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2019-11, Vol.28 (10-11), p.3437-3450
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_2120202614
source Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Additives
Associations
Belgium - epidemiology
Bivariate analysis
Chickenpox - blood
Chickenpox - epidemiology
Decomposition
Denmark - epidemiology
Female
Frailty
Humans
Male
Models, Statistical
Mortality - trends
Multivariate Analysis
Parvoviridae Infections - blood
Parvoviridae Infections - epidemiology
Parvovirus B19, Human
Survival
Survival Analysis
Twin Studies as Topic
Twins
Viruses
title Correlated gamma frailty models for bivariate survival time data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T09%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20gamma%20frailty%20models%20for%20bivariate%20survival%20time%20data&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Martins,%20Adelino&rft.date=2019-11-01&rft.volume=28&rft.issue=10-11&rft.spage=3437&rft.epage=3450&rft.pages=3437-3450&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280218803127&rft_dat=%3Cproquest_cross%3E2120202614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288643482&rft_id=info:pmid/30319043&rft_sage_id=10.1177_0962280218803127&rfr_iscdi=true