Crystalline CO2‐Based Aliphatic Polycarbonates with Long Alkyl Chains

Carbon dioxide (CO2) is an easily available, renewable carbon source and can be utilized as a comonomer in the catalytic ring‐opening polymerization of epoxides to generate aliphatic polycarbonates. Dodecyl glycidyl ether (DDGE) is copolymerized with CO2 and propylene oxide (PO) to obtain aliphatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2018-12, Vol.39 (24), p.e1800558-n/a
Hauptverfasser: Kunze, Lena, Wolfs, Jonas, Verkoyen, Patrick, Frey, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page e1800558
container_title Macromolecular rapid communications.
container_volume 39
creator Kunze, Lena
Wolfs, Jonas
Verkoyen, Patrick
Frey, Holger
description Carbon dioxide (CO2) is an easily available, renewable carbon source and can be utilized as a comonomer in the catalytic ring‐opening polymerization of epoxides to generate aliphatic polycarbonates. Dodecyl glycidyl ether (DDGE) is copolymerized with CO2 and propylene oxide (PO) to obtain aliphatic poly(dodecyl glycidyl ether carbonate) and poly(propylene carbonate‐co‐dodecyl glycidyl ether carbonate) copolymers, respectively. The polymerization proceeds at 30 °C and high CO2 pressure utilizing the established binary catalytic system (R,R)‐Co(salen)Cl/[PPN]Cl. The copolymers with varying DDGE:PO ratios are characterized via NMR, FT‐IR spectroscopy, and SEC, exhibiting high molecular weights between 11 400 and 37 900 g mol−1 with dispersities (Р= M w/M n) in the range of 1.37–1.61. Copolymers with T gs of −11 °C or T ms from 5 to 15 °C and thermal decomposition >200 °C depending on the comonomer ratio, are obtained as determined by differential scanning calorimetry/TGA. This work shows that aliphatic long alkyl chain polycarbonates with high molecular weights and tailorable degrees of crystallization are accessible via catalytic ring‐opening polymerization on the basis of C12 alkyl glycidyl ethers, propylene oxide, and carbon dioxide. The copolymers are comprehensively characterized by NMR‐, IR‐spectroscopy, SEC, differential scanning calorimetry, and TGA measurements.
doi_str_mv 10.1002/marc.201800558
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2120201680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120201680</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2338-a34f0de7e361f99eb0c137f1db180839d81aac9b8d9e60f5ddfb37d0f6a1a04f3</originalsourceid><addsrcrecordid>eNpdkM1KAzEUhYMoWKtb1wNu3Ey9SeYnWdbBVqFSEV2HzCRpU9OZOplSZucj-Iw-iSmVLlyde-DjcvgQusYwwgDkbi3bakQAM4A0ZSdogFOCY8pJfhpuICTGlGbn6ML7FQCwBMgATYu29510ztY6Kubk5-v7XnqtorGzm6XsbBW9NK6vZFs2tey0j3a2W0azpl4E5KN3UbGUtvaX6MxI5_XVXw7R--ThrXiMZ_PpUzGexQtCKYslTQwonWuaYcO5LqHCNDdYlWE2o1wxLGXFS6a4zsCkSpmS5gpMJrGExNAhuj383bTN51b7Tqytr7RzstbN1guCCQQHGYOA3vxDV822rcO6QKWMAE-SNFD8QO2s073YtDZ47AUGsZcq9lLFUap4Hr8Wx0Z_AVnwbY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158209445</pqid></control><display><type>article</type><title>Crystalline CO2‐Based Aliphatic Polycarbonates with Long Alkyl Chains</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kunze, Lena ; Wolfs, Jonas ; Verkoyen, Patrick ; Frey, Holger</creator><creatorcontrib>Kunze, Lena ; Wolfs, Jonas ; Verkoyen, Patrick ; Frey, Holger</creatorcontrib><description>Carbon dioxide (CO2) is an easily available, renewable carbon source and can be utilized as a comonomer in the catalytic ring‐opening polymerization of epoxides to generate aliphatic polycarbonates. Dodecyl glycidyl ether (DDGE) is copolymerized with CO2 and propylene oxide (PO) to obtain aliphatic poly(dodecyl glycidyl ether carbonate) and poly(propylene carbonate‐co‐dodecyl glycidyl ether carbonate) copolymers, respectively. The polymerization proceeds at 30 °C and high CO2 pressure utilizing the established binary catalytic system (R,R)‐Co(salen)Cl/[PPN]Cl. The copolymers with varying DDGE:PO ratios are characterized via NMR, FT‐IR spectroscopy, and SEC, exhibiting high molecular weights between 11 400 and 37 900 g mol−1 with dispersities (Р= M w/M n) in the range of 1.37–1.61. Copolymers with T gs of −11 °C or T ms from 5 to 15 °C and thermal decomposition &gt;200 °C depending on the comonomer ratio, are obtained as determined by differential scanning calorimetry/TGA. This work shows that aliphatic long alkyl chain polycarbonates with high molecular weights and tailorable degrees of crystallization are accessible via catalytic ring‐opening polymerization on the basis of C12 alkyl glycidyl ethers, propylene oxide, and carbon dioxide. The copolymers are comprehensively characterized by NMR‐, IR‐spectroscopy, SEC, differential scanning calorimetry, and TGA measurements.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201800558</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aliphatic compounds ; Calorimetry ; Carbon dioxide ; Carbon monoxide ; Carbon sources ; Catalysis ; catalysts ; Chemical industry ; Copolymerization ; Copolymers ; crystallization ; Differential scanning calorimetry ; Epoxides ; Infrared spectroscopy ; NMR ; Nuclear magnetic resonance ; Polycarbonate resins ; polycarbonates ; Polymerization ; Propylene oxide ; Ring opening polymerization ; Thermal decomposition ; thermal properties</subject><ispartof>Macromolecular rapid communications., 2018-12, Vol.39 (24), p.e1800558-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9916-3103 ; 0000-0001-6075-817X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201800558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201800558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kunze, Lena</creatorcontrib><creatorcontrib>Wolfs, Jonas</creatorcontrib><creatorcontrib>Verkoyen, Patrick</creatorcontrib><creatorcontrib>Frey, Holger</creatorcontrib><title>Crystalline CO2‐Based Aliphatic Polycarbonates with Long Alkyl Chains</title><title>Macromolecular rapid communications.</title><description>Carbon dioxide (CO2) is an easily available, renewable carbon source and can be utilized as a comonomer in the catalytic ring‐opening polymerization of epoxides to generate aliphatic polycarbonates. Dodecyl glycidyl ether (DDGE) is copolymerized with CO2 and propylene oxide (PO) to obtain aliphatic poly(dodecyl glycidyl ether carbonate) and poly(propylene carbonate‐co‐dodecyl glycidyl ether carbonate) copolymers, respectively. The polymerization proceeds at 30 °C and high CO2 pressure utilizing the established binary catalytic system (R,R)‐Co(salen)Cl/[PPN]Cl. The copolymers with varying DDGE:PO ratios are characterized via NMR, FT‐IR spectroscopy, and SEC, exhibiting high molecular weights between 11 400 and 37 900 g mol−1 with dispersities (Р= M w/M n) in the range of 1.37–1.61. Copolymers with T gs of −11 °C or T ms from 5 to 15 °C and thermal decomposition &gt;200 °C depending on the comonomer ratio, are obtained as determined by differential scanning calorimetry/TGA. This work shows that aliphatic long alkyl chain polycarbonates with high molecular weights and tailorable degrees of crystallization are accessible via catalytic ring‐opening polymerization on the basis of C12 alkyl glycidyl ethers, propylene oxide, and carbon dioxide. The copolymers are comprehensively characterized by NMR‐, IR‐spectroscopy, SEC, differential scanning calorimetry, and TGA measurements.</description><subject>Aliphatic compounds</subject><subject>Calorimetry</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carbon sources</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>Chemical industry</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Epoxides</subject><subject>Infrared spectroscopy</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polycarbonate resins</subject><subject>polycarbonates</subject><subject>Polymerization</subject><subject>Propylene oxide</subject><subject>Ring opening polymerization</subject><subject>Thermal decomposition</subject><subject>thermal properties</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KAzEUhYMoWKtb1wNu3Ey9SeYnWdbBVqFSEV2HzCRpU9OZOplSZucj-Iw-iSmVLlyde-DjcvgQusYwwgDkbi3bakQAM4A0ZSdogFOCY8pJfhpuICTGlGbn6ML7FQCwBMgATYu29510ztY6Kubk5-v7XnqtorGzm6XsbBW9NK6vZFs2tey0j3a2W0azpl4E5KN3UbGUtvaX6MxI5_XVXw7R--ThrXiMZ_PpUzGexQtCKYslTQwonWuaYcO5LqHCNDdYlWE2o1wxLGXFS6a4zsCkSpmS5gpMJrGExNAhuj383bTN51b7Tqytr7RzstbN1guCCQQHGYOA3vxDV822rcO6QKWMAE-SNFD8QO2s073YtDZ47AUGsZcq9lLFUap4Hr8Wx0Z_AVnwbY4</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Kunze, Lena</creator><creator>Wolfs, Jonas</creator><creator>Verkoyen, Patrick</creator><creator>Frey, Holger</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9916-3103</orcidid><orcidid>https://orcid.org/0000-0001-6075-817X</orcidid></search><sort><creationdate>201812</creationdate><title>Crystalline CO2‐Based Aliphatic Polycarbonates with Long Alkyl Chains</title><author>Kunze, Lena ; Wolfs, Jonas ; Verkoyen, Patrick ; Frey, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2338-a34f0de7e361f99eb0c137f1db180839d81aac9b8d9e60f5ddfb37d0f6a1a04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aliphatic compounds</topic><topic>Calorimetry</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carbon sources</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>Chemical industry</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Epoxides</topic><topic>Infrared spectroscopy</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polycarbonate resins</topic><topic>polycarbonates</topic><topic>Polymerization</topic><topic>Propylene oxide</topic><topic>Ring opening polymerization</topic><topic>Thermal decomposition</topic><topic>thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunze, Lena</creatorcontrib><creatorcontrib>Wolfs, Jonas</creatorcontrib><creatorcontrib>Verkoyen, Patrick</creatorcontrib><creatorcontrib>Frey, Holger</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunze, Lena</au><au>Wolfs, Jonas</au><au>Verkoyen, Patrick</au><au>Frey, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline CO2‐Based Aliphatic Polycarbonates with Long Alkyl Chains</atitle><jtitle>Macromolecular rapid communications.</jtitle><date>2018-12</date><risdate>2018</risdate><volume>39</volume><issue>24</issue><spage>e1800558</spage><epage>n/a</epage><pages>e1800558-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Carbon dioxide (CO2) is an easily available, renewable carbon source and can be utilized as a comonomer in the catalytic ring‐opening polymerization of epoxides to generate aliphatic polycarbonates. Dodecyl glycidyl ether (DDGE) is copolymerized with CO2 and propylene oxide (PO) to obtain aliphatic poly(dodecyl glycidyl ether carbonate) and poly(propylene carbonate‐co‐dodecyl glycidyl ether carbonate) copolymers, respectively. The polymerization proceeds at 30 °C and high CO2 pressure utilizing the established binary catalytic system (R,R)‐Co(salen)Cl/[PPN]Cl. The copolymers with varying DDGE:PO ratios are characterized via NMR, FT‐IR spectroscopy, and SEC, exhibiting high molecular weights between 11 400 and 37 900 g mol−1 with dispersities (Р= M w/M n) in the range of 1.37–1.61. Copolymers with T gs of −11 °C or T ms from 5 to 15 °C and thermal decomposition &gt;200 °C depending on the comonomer ratio, are obtained as determined by differential scanning calorimetry/TGA. This work shows that aliphatic long alkyl chain polycarbonates with high molecular weights and tailorable degrees of crystallization are accessible via catalytic ring‐opening polymerization on the basis of C12 alkyl glycidyl ethers, propylene oxide, and carbon dioxide. The copolymers are comprehensively characterized by NMR‐, IR‐spectroscopy, SEC, differential scanning calorimetry, and TGA measurements.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/marc.201800558</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9916-3103</orcidid><orcidid>https://orcid.org/0000-0001-6075-817X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2018-12, Vol.39 (24), p.e1800558-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2120201680
source Wiley Online Library Journals Frontfile Complete
subjects Aliphatic compounds
Calorimetry
Carbon dioxide
Carbon monoxide
Carbon sources
Catalysis
catalysts
Chemical industry
Copolymerization
Copolymers
crystallization
Differential scanning calorimetry
Epoxides
Infrared spectroscopy
NMR
Nuclear magnetic resonance
Polycarbonate resins
polycarbonates
Polymerization
Propylene oxide
Ring opening polymerization
Thermal decomposition
thermal properties
title Crystalline CO2‐Based Aliphatic Polycarbonates with Long Alkyl Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline%20CO2%E2%80%90Based%20Aliphatic%20Polycarbonates%20with%20Long%20Alkyl%20Chains&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Kunze,%20Lena&rft.date=2018-12&rft.volume=39&rft.issue=24&rft.spage=e1800558&rft.epage=n/a&rft.pages=e1800558-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201800558&rft_dat=%3Cproquest_wiley%3E2120201680%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158209445&rft_id=info:pmid/&rfr_iscdi=true