Exercise and the control of muscle mass in human
During the course of life, muscle mass undergoes many changes in terms of quantity and quality. Skeletal muscle is a dynamic tissue able to hypertrophy or atrophy according to growth, ageing, physical activity, nutrition and health state. The purpose of the present review is to present the mechanism...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2019-03, Vol.471 (3), p.397-411 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 3 |
container_start_page | 397 |
container_title | Pflügers Archiv |
container_volume | 471 |
creator | Francaux, Marc Deldicque, Louise |
description | During the course of life, muscle mass undergoes many changes in terms of quantity and quality. Skeletal muscle is a dynamic tissue able to hypertrophy or atrophy according to growth, ageing, physical activity, nutrition and health state. The purpose of the present review is to present the mechanisms by which exercise can induce changes in human skeletal muscle mass by modulating protein balance and regulating the fate of satellite cells. Exercise is known to exert transcriptional, translational and post-translational regulations as well as to induce epigenetic modifications and to control messenger RNA stability, which all contribute to the regulation of protein synthesis. Exercise also regulates the autophagy–lysosomal and the ubiquitin–proteasome pathways, the two main proteolytic systems in skeletal muscle, indicating that exercise participates to the regulation of the quality control mechanisms of cellular components and, therefore, to muscle health. Finally, activation, proliferation and differentiation of satellite cells can be enhanced by exercise to induce muscle remodelling and hypertrophy. Each of these mechanisms can potentially impact skeletal muscle mass, depending on the intensity, duration and frequency with which the signal appears. |
doi_str_mv | 10.1007/s00424-018-2217-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2119918973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119918973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8f927b17de3998aab102eff39364bf59ccf22d8340b387e1ef5d220fd85930d03</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIlOjObJrtHKfUDCl70vGySXZuSj7rbQP33bkhVEDzNYZ55Z-Zh7BLhFgGyOw-QUBIDipgIs3h_xKaYcIoJkB-zKQDHOM1SMWFn3m8AgBJBp2zCQwOkxCmD5d64ovIm0m0Z7dYmKrp257o66mzU9L6oTdRo76OqjdZ9o9tzdmJ17c3Foc7Y28PydfEUr14enxf3q7jgGe1iYSVlOWal4VIKrXMEMtZyydMkt3NZFJaoFDyBnIvMoLHzkghsKeaSQwl8xm7G3K3rPnrjd6qpfGHqWrem670ixPCAkBkP6PUfdNP1rg3XDZTAhFIxUDhSheu8d8aqrasa7T4Vghp0qlGnCjrVoFPtw8zVIbnPG1P-THz7CwCNgA-t9t2439X_p34BgIF9xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118142683</pqid></control><display><type>article</type><title>Exercise and the control of muscle mass in human</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Francaux, Marc ; Deldicque, Louise</creator><creatorcontrib>Francaux, Marc ; Deldicque, Louise</creatorcontrib><description>During the course of life, muscle mass undergoes many changes in terms of quantity and quality. Skeletal muscle is a dynamic tissue able to hypertrophy or atrophy according to growth, ageing, physical activity, nutrition and health state. The purpose of the present review is to present the mechanisms by which exercise can induce changes in human skeletal muscle mass by modulating protein balance and regulating the fate of satellite cells. Exercise is known to exert transcriptional, translational and post-translational regulations as well as to induce epigenetic modifications and to control messenger RNA stability, which all contribute to the regulation of protein synthesis. Exercise also regulates the autophagy–lysosomal and the ubiquitin–proteasome pathways, the two main proteolytic systems in skeletal muscle, indicating that exercise participates to the regulation of the quality control mechanisms of cellular components and, therefore, to muscle health. Finally, activation, proliferation and differentiation of satellite cells can be enhanced by exercise to induce muscle remodelling and hypertrophy. Each of these mechanisms can potentially impact skeletal muscle mass, depending on the intensity, duration and frequency with which the signal appears.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-018-2217-x</identifier><identifier>PMID: 30310991</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aging ; Aging - physiology ; Animals ; Atrophy ; Autophagy ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell proliferation ; Exercise ; Exercise - physiology ; Human Physiology ; Humans ; Hypertrophy ; Hypertrophy - physiopathology ; Invited Review ; Molecular Medicine ; mRNA stability ; Muscle, Skeletal - physiology ; Muscular Atrophy - physiopathology ; Musculoskeletal system ; Neurosciences ; Phagocytosis ; Physical activity ; Physical Conditioning, Animal - physiology ; Physical fitness ; Physical training ; Post-translation ; Proteasomes ; Protein biosynthesis ; Proteolysis ; Quality control ; Receptors ; Satellite cells ; Signal Transduction - physiology ; Skeletal muscle ; Transcription ; Translation ; Ubiquitin</subject><ispartof>Pflügers Archiv, 2019-03, Vol.471 (3), p.397-411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Pflügers Archiv - European Journal of Physiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8f927b17de3998aab102eff39364bf59ccf22d8340b387e1ef5d220fd85930d03</citedby><cites>FETCH-LOGICAL-c372t-8f927b17de3998aab102eff39364bf59ccf22d8340b387e1ef5d220fd85930d03</cites><orcidid>0000-0003-3393-5278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-018-2217-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-018-2217-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30310991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Francaux, Marc</creatorcontrib><creatorcontrib>Deldicque, Louise</creatorcontrib><title>Exercise and the control of muscle mass in human</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>During the course of life, muscle mass undergoes many changes in terms of quantity and quality. Skeletal muscle is a dynamic tissue able to hypertrophy or atrophy according to growth, ageing, physical activity, nutrition and health state. The purpose of the present review is to present the mechanisms by which exercise can induce changes in human skeletal muscle mass by modulating protein balance and regulating the fate of satellite cells. Exercise is known to exert transcriptional, translational and post-translational regulations as well as to induce epigenetic modifications and to control messenger RNA stability, which all contribute to the regulation of protein synthesis. Exercise also regulates the autophagy–lysosomal and the ubiquitin–proteasome pathways, the two main proteolytic systems in skeletal muscle, indicating that exercise participates to the regulation of the quality control mechanisms of cellular components and, therefore, to muscle health. Finally, activation, proliferation and differentiation of satellite cells can be enhanced by exercise to induce muscle remodelling and hypertrophy. Each of these mechanisms can potentially impact skeletal muscle mass, depending on the intensity, duration and frequency with which the signal appears.</description><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell proliferation</subject><subject>Exercise</subject><subject>Exercise - physiology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Hypertrophy - physiopathology</subject><subject>Invited Review</subject><subject>Molecular Medicine</subject><subject>mRNA stability</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscular Atrophy - physiopathology</subject><subject>Musculoskeletal system</subject><subject>Neurosciences</subject><subject>Phagocytosis</subject><subject>Physical activity</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Physical fitness</subject><subject>Physical training</subject><subject>Post-translation</subject><subject>Proteasomes</subject><subject>Protein biosynthesis</subject><subject>Proteolysis</subject><subject>Quality control</subject><subject>Receptors</subject><subject>Satellite cells</subject><subject>Signal Transduction - physiology</subject><subject>Skeletal muscle</subject><subject>Transcription</subject><subject>Translation</subject><subject>Ubiquitin</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIlOjObJrtHKfUDCl70vGySXZuSj7rbQP33bkhVEDzNYZ55Z-Zh7BLhFgGyOw-QUBIDipgIs3h_xKaYcIoJkB-zKQDHOM1SMWFn3m8AgBJBp2zCQwOkxCmD5d64ovIm0m0Z7dYmKrp257o66mzU9L6oTdRo76OqjdZ9o9tzdmJ17c3Foc7Y28PydfEUr14enxf3q7jgGe1iYSVlOWal4VIKrXMEMtZyydMkt3NZFJaoFDyBnIvMoLHzkghsKeaSQwl8xm7G3K3rPnrjd6qpfGHqWrem670ixPCAkBkP6PUfdNP1rg3XDZTAhFIxUDhSheu8d8aqrasa7T4Vghp0qlGnCjrVoFPtw8zVIbnPG1P-THz7CwCNgA-t9t2439X_p34BgIF9xg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Francaux, Marc</creator><creator>Deldicque, Louise</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3393-5278</orcidid></search><sort><creationdate>20190301</creationdate><title>Exercise and the control of muscle mass in human</title><author>Francaux, Marc ; Deldicque, Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8f927b17de3998aab102eff39364bf59ccf22d8340b387e1ef5d220fd85930d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell proliferation</topic><topic>Exercise</topic><topic>Exercise - physiology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Hypertrophy - physiopathology</topic><topic>Invited Review</topic><topic>Molecular Medicine</topic><topic>mRNA stability</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscular Atrophy - physiopathology</topic><topic>Musculoskeletal system</topic><topic>Neurosciences</topic><topic>Phagocytosis</topic><topic>Physical activity</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Physical fitness</topic><topic>Physical training</topic><topic>Post-translation</topic><topic>Proteasomes</topic><topic>Protein biosynthesis</topic><topic>Proteolysis</topic><topic>Quality control</topic><topic>Receptors</topic><topic>Satellite cells</topic><topic>Signal Transduction - physiology</topic><topic>Skeletal muscle</topic><topic>Transcription</topic><topic>Translation</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francaux, Marc</creatorcontrib><creatorcontrib>Deldicque, Louise</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francaux, Marc</au><au>Deldicque, Louise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exercise and the control of muscle mass in human</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>471</volume><issue>3</issue><spage>397</spage><epage>411</epage><pages>397-411</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>During the course of life, muscle mass undergoes many changes in terms of quantity and quality. Skeletal muscle is a dynamic tissue able to hypertrophy or atrophy according to growth, ageing, physical activity, nutrition and health state. The purpose of the present review is to present the mechanisms by which exercise can induce changes in human skeletal muscle mass by modulating protein balance and regulating the fate of satellite cells. Exercise is known to exert transcriptional, translational and post-translational regulations as well as to induce epigenetic modifications and to control messenger RNA stability, which all contribute to the regulation of protein synthesis. Exercise also regulates the autophagy–lysosomal and the ubiquitin–proteasome pathways, the two main proteolytic systems in skeletal muscle, indicating that exercise participates to the regulation of the quality control mechanisms of cellular components and, therefore, to muscle health. Finally, activation, proliferation and differentiation of satellite cells can be enhanced by exercise to induce muscle remodelling and hypertrophy. Each of these mechanisms can potentially impact skeletal muscle mass, depending on the intensity, duration and frequency with which the signal appears.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30310991</pmid><doi>10.1007/s00424-018-2217-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3393-5278</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2019-03, Vol.471 (3), p.397-411 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_proquest_miscellaneous_2119918973 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Aging Aging - physiology Animals Atrophy Autophagy Biomedical and Life Sciences Biomedicine Cell Biology Cell proliferation Exercise Exercise - physiology Human Physiology Humans Hypertrophy Hypertrophy - physiopathology Invited Review Molecular Medicine mRNA stability Muscle, Skeletal - physiology Muscular Atrophy - physiopathology Musculoskeletal system Neurosciences Phagocytosis Physical activity Physical Conditioning, Animal - physiology Physical fitness Physical training Post-translation Proteasomes Protein biosynthesis Proteolysis Quality control Receptors Satellite cells Signal Transduction - physiology Skeletal muscle Transcription Translation Ubiquitin |
title | Exercise and the control of muscle mass in human |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exercise%20and%20the%20control%20of%20muscle%20mass%20in%20human&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Francaux,%20Marc&rft.date=2019-03-01&rft.volume=471&rft.issue=3&rft.spage=397&rft.epage=411&rft.pages=397-411&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-018-2217-x&rft_dat=%3Cproquest_cross%3E2119918973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118142683&rft_id=info:pmid/30310991&rfr_iscdi=true |