Assessment of Predictive Habitat Models for Bighorn Sheep in California's Peninsular Ranges

We developed predictive habitat models for a bighorn sheep (Ovis canadensis) population in the Peninsular Ranges of southern California, USA, using 2 Geographic Information System modeling techniques, Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm for Rule-set Production (GARP). We us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of wildlife management 2009-08, Vol.73 (6), p.859-869
Hauptverfasser: Rubin, Esther S, Stermer, Chris J, Boyce, Walter M, Torres, Steven G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 6
container_start_page 859
container_title The Journal of wildlife management
container_volume 73
creator Rubin, Esther S
Stermer, Chris J
Boyce, Walter M
Torres, Steven G
description We developed predictive habitat models for a bighorn sheep (Ovis canadensis) population in the Peninsular Ranges of southern California, USA, using 2 Geographic Information System modeling techniques, Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm for Rule-set Production (GARP). We used >16,000 Global Positioning System locations from 34 animals in 5 subpopulations to develop and test ENFA and GARP models, and we then compared these models to each other and to the expert-based model presented in the United States Fish and Wildlife Service's Recovery Plan for this population. Based on a suite of evaluation methods, we found both ENFA and GARP to provide useful predictions of habitat; however, models developed with GARP appeared to have higher predictive power. Habitat delineations resulting from GARP models were similar to the expert-based model, affirming that the expert-based model provided a useful delineation of bighorn sheep habitat in the Peninsular Ranges. In addition, all 3 models identified continuous bighorn sheep habitat from the northern to southern extent of our study area, indicating that the Recovery Plan's recommendation of maintaining habitat connectivity throughout the range is an appropriate goal.
doi_str_mv 10.2193/2008-240
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_21199159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20616732</jstor_id><sourcerecordid>20616732</sourcerecordid><originalsourceid>FETCH-LOGICAL-b4389-cd18555070b35ff61b866253a2e5dc367be91152791d7ee521c9ab8637a737d53</originalsourceid><addsrcrecordid>eNp10NFu0zAUBuAIgUQZSLwAwuKCcRPwsWM7uRzVyEAbVHRTkbiwnOSkc0ntYqfA3h5XQZuEtCvLOp_-Y_9Z9hzoWwYVf8coLXNW0AfZLF1VzkpQD7MZpYzlooBvj7MnMW4o5QClnGXfT2LEGLfoRuJ7sgjY2Xa0v5CcmcaOZiQXvsMhkt4H8t6ur31wZHmNuCPWkbkZbBo4a44jWaCzLu4HE8hX49YYn2aPejNEfPbvPMquPpxezs_y8y_1x_nJed4UvKzytoNSCEEVbbjoewlNKSUT3DAUXcularACEExV0ClEwaCtTDJcGcVVJ_hR9nrK3QX_c49x1FsbWxwG49Dvo2YAVQWiSvDVf3Dj98Glt2nGC0Yl50VCbybUBh9jwF7vgt2acKOB6kPF-lCxThUnmk_0tx3w5l6nP60u6qI87H8x-U0cfbj1aTFIxdldno0j_rmdm_BDp7kSevW51pfLZVGv6oU-5L2cfG-8Nutgo75aMgqcgpQlMHZXTWO9d3j_V_4C1iGndw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234206334</pqid></control><display><type>article</type><title>Assessment of Predictive Habitat Models for Bighorn Sheep in California's Peninsular Ranges</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rubin, Esther S ; Stermer, Chris J ; Boyce, Walter M ; Torres, Steven G</creator><creatorcontrib>Rubin, Esther S ; Stermer, Chris J ; Boyce, Walter M ; Torres, Steven G</creatorcontrib><description>We developed predictive habitat models for a bighorn sheep (Ovis canadensis) population in the Peninsular Ranges of southern California, USA, using 2 Geographic Information System modeling techniques, Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm for Rule-set Production (GARP). We used &gt;16,000 Global Positioning System locations from 34 animals in 5 subpopulations to develop and test ENFA and GARP models, and we then compared these models to each other and to the expert-based model presented in the United States Fish and Wildlife Service's Recovery Plan for this population. Based on a suite of evaluation methods, we found both ENFA and GARP to provide useful predictions of habitat; however, models developed with GARP appeared to have higher predictive power. Habitat delineations resulting from GARP models were similar to the expert-based model, affirming that the expert-based model provided a useful delineation of bighorn sheep habitat in the Peninsular Ranges. In addition, all 3 models identified continuous bighorn sheep habitat from the northern to southern extent of our study area, indicating that the Recovery Plan's recommendation of maintaining habitat connectivity throughout the range is an appropriate goal.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.2193/2008-240</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>bighorn sheep ; Biomapper ; California ; Climate change ; Ecological modeling ; endangered species ; expert-based model ; Factor analysis ; GARP ; Geographic information systems ; Global atmospheric research program ; Global positioning systems ; GPS ; Habitat conservation ; habitat model ; Habitats ; Mammals ; Management and Conservation ; Modeling ; Mountains ; Ovis Canadensis ; Pixels ; prediction ; Predictive modeling ; Remote sensing ; Sheep ; Subpopulations ; Test data ; Urban development ; Wildlife ; Wildlife habitats</subject><ispartof>The Journal of wildlife management, 2009-08, Vol.73 (6), p.859-869</ispartof><rights>The Wildlife Society</rights><rights>Copyright 2009 The Wildlife Society</rights><rights>2009 The Wildlife Society</rights><rights>Copyright Allen Press Publishing Services Aug 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b4389-cd18555070b35ff61b866253a2e5dc367be91152791d7ee521c9ab8637a737d53</citedby><cites>FETCH-LOGICAL-b4389-cd18555070b35ff61b866253a2e5dc367be91152791d7ee521c9ab8637a737d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20616732$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20616732$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Rubin, Esther S</creatorcontrib><creatorcontrib>Stermer, Chris J</creatorcontrib><creatorcontrib>Boyce, Walter M</creatorcontrib><creatorcontrib>Torres, Steven G</creatorcontrib><title>Assessment of Predictive Habitat Models for Bighorn Sheep in California's Peninsular Ranges</title><title>The Journal of wildlife management</title><description>We developed predictive habitat models for a bighorn sheep (Ovis canadensis) population in the Peninsular Ranges of southern California, USA, using 2 Geographic Information System modeling techniques, Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm for Rule-set Production (GARP). We used &gt;16,000 Global Positioning System locations from 34 animals in 5 subpopulations to develop and test ENFA and GARP models, and we then compared these models to each other and to the expert-based model presented in the United States Fish and Wildlife Service's Recovery Plan for this population. Based on a suite of evaluation methods, we found both ENFA and GARP to provide useful predictions of habitat; however, models developed with GARP appeared to have higher predictive power. Habitat delineations resulting from GARP models were similar to the expert-based model, affirming that the expert-based model provided a useful delineation of bighorn sheep habitat in the Peninsular Ranges. In addition, all 3 models identified continuous bighorn sheep habitat from the northern to southern extent of our study area, indicating that the Recovery Plan's recommendation of maintaining habitat connectivity throughout the range is an appropriate goal.</description><subject>bighorn sheep</subject><subject>Biomapper</subject><subject>California</subject><subject>Climate change</subject><subject>Ecological modeling</subject><subject>endangered species</subject><subject>expert-based model</subject><subject>Factor analysis</subject><subject>GARP</subject><subject>Geographic information systems</subject><subject>Global atmospheric research program</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Habitat conservation</subject><subject>habitat model</subject><subject>Habitats</subject><subject>Mammals</subject><subject>Management and Conservation</subject><subject>Modeling</subject><subject>Mountains</subject><subject>Ovis Canadensis</subject><subject>Pixels</subject><subject>prediction</subject><subject>Predictive modeling</subject><subject>Remote sensing</subject><subject>Sheep</subject><subject>Subpopulations</subject><subject>Test data</subject><subject>Urban development</subject><subject>Wildlife</subject><subject>Wildlife habitats</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10NFu0zAUBuAIgUQZSLwAwuKCcRPwsWM7uRzVyEAbVHRTkbiwnOSkc0ntYqfA3h5XQZuEtCvLOp_-Y_9Z9hzoWwYVf8coLXNW0AfZLF1VzkpQD7MZpYzlooBvj7MnMW4o5QClnGXfT2LEGLfoRuJ7sgjY2Xa0v5CcmcaOZiQXvsMhkt4H8t6ur31wZHmNuCPWkbkZbBo4a44jWaCzLu4HE8hX49YYn2aPejNEfPbvPMquPpxezs_y8y_1x_nJed4UvKzytoNSCEEVbbjoewlNKSUT3DAUXcularACEExV0ClEwaCtTDJcGcVVJ_hR9nrK3QX_c49x1FsbWxwG49Dvo2YAVQWiSvDVf3Dj98Glt2nGC0Yl50VCbybUBh9jwF7vgt2acKOB6kPF-lCxThUnmk_0tx3w5l6nP60u6qI87H8x-U0cfbj1aTFIxdldno0j_rmdm_BDp7kSevW51pfLZVGv6oU-5L2cfG-8Nutgo75aMgqcgpQlMHZXTWO9d3j_V_4C1iGndw</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Rubin, Esther S</creator><creator>Stermer, Chris J</creator><creator>Boyce, Walter M</creator><creator>Torres, Steven G</creator><general>Blackwell Publishing Ltd</general><general>The Wildlife Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>7X2</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>200908</creationdate><title>Assessment of Predictive Habitat Models for Bighorn Sheep in California's Peninsular Ranges</title><author>Rubin, Esther S ; Stermer, Chris J ; Boyce, Walter M ; Torres, Steven G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b4389-cd18555070b35ff61b866253a2e5dc367be91152791d7ee521c9ab8637a737d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>bighorn sheep</topic><topic>Biomapper</topic><topic>California</topic><topic>Climate change</topic><topic>Ecological modeling</topic><topic>endangered species</topic><topic>expert-based model</topic><topic>Factor analysis</topic><topic>GARP</topic><topic>Geographic information systems</topic><topic>Global atmospheric research program</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Habitat conservation</topic><topic>habitat model</topic><topic>Habitats</topic><topic>Mammals</topic><topic>Management and Conservation</topic><topic>Modeling</topic><topic>Mountains</topic><topic>Ovis Canadensis</topic><topic>Pixels</topic><topic>prediction</topic><topic>Predictive modeling</topic><topic>Remote sensing</topic><topic>Sheep</topic><topic>Subpopulations</topic><topic>Test data</topic><topic>Urban development</topic><topic>Wildlife</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubin, Esther S</creatorcontrib><creatorcontrib>Stermer, Chris J</creatorcontrib><creatorcontrib>Boyce, Walter M</creatorcontrib><creatorcontrib>Torres, Steven G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubin, Esther S</au><au>Stermer, Chris J</au><au>Boyce, Walter M</au><au>Torres, Steven G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Predictive Habitat Models for Bighorn Sheep in California's Peninsular Ranges</atitle><jtitle>The Journal of wildlife management</jtitle><date>2009-08</date><risdate>2009</risdate><volume>73</volume><issue>6</issue><spage>859</spage><epage>869</epage><pages>859-869</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>We developed predictive habitat models for a bighorn sheep (Ovis canadensis) population in the Peninsular Ranges of southern California, USA, using 2 Geographic Information System modeling techniques, Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm for Rule-set Production (GARP). We used &gt;16,000 Global Positioning System locations from 34 animals in 5 subpopulations to develop and test ENFA and GARP models, and we then compared these models to each other and to the expert-based model presented in the United States Fish and Wildlife Service's Recovery Plan for this population. Based on a suite of evaluation methods, we found both ENFA and GARP to provide useful predictions of habitat; however, models developed with GARP appeared to have higher predictive power. Habitat delineations resulting from GARP models were similar to the expert-based model, affirming that the expert-based model provided a useful delineation of bighorn sheep habitat in the Peninsular Ranges. In addition, all 3 models identified continuous bighorn sheep habitat from the northern to southern extent of our study area, indicating that the Recovery Plan's recommendation of maintaining habitat connectivity throughout the range is an appropriate goal.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.2193/2008-240</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-541X
ispartof The Journal of wildlife management, 2009-08, Vol.73 (6), p.859-869
issn 0022-541X
1937-2817
language eng
recordid cdi_proquest_miscellaneous_21199159
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects bighorn sheep
Biomapper
California
Climate change
Ecological modeling
endangered species
expert-based model
Factor analysis
GARP
Geographic information systems
Global atmospheric research program
Global positioning systems
GPS
Habitat conservation
habitat model
Habitats
Mammals
Management and Conservation
Modeling
Mountains
Ovis Canadensis
Pixels
prediction
Predictive modeling
Remote sensing
Sheep
Subpopulations
Test data
Urban development
Wildlife
Wildlife habitats
title Assessment of Predictive Habitat Models for Bighorn Sheep in California's Peninsular Ranges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Predictive%20Habitat%20Models%20for%20Bighorn%20Sheep%20in%20California's%20Peninsular%20Ranges&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=Rubin,%20Esther%20S&rft.date=2009-08&rft.volume=73&rft.issue=6&rft.spage=859&rft.epage=869&rft.pages=859-869&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.2193/2008-240&rft_dat=%3Cjstor_proqu%3E20616732%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234206334&rft_id=info:pmid/&rft_jstor_id=20616732&rfr_iscdi=true