Radiation and Transforming Growth Factor-β Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene

Radiation-induced fibrosis is an important side effect in the treatment of cancer. Profibrotic proteins, such as plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β (TGF-β), and tissue type inhibitor of metalloproteinases-1 (Timp-1), are thought to play major roles in the develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2005-08, Vol.11 (16), p.5956-5964
Hauptverfasser: Hageman, Jurre, Eggen, Bart J, Rozema, Tom, Damman, Kevin, Kampinga, Harm H, Coppes, Robert P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5964
container_issue 16
container_start_page 5956
container_title Clinical cancer research
container_volume 11
creator Hageman, Jurre
Eggen, Bart J
Rozema, Tom
Damman, Kevin
Kampinga, Harm H
Coppes, Robert P
description Radiation-induced fibrosis is an important side effect in the treatment of cancer. Profibrotic proteins, such as plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β (TGF-β), and tissue type inhibitor of metalloproteinases-1 (Timp-1), are thought to play major roles in the development of fibrosis via the modulation of extracellular matrix integrity. We did a detailed analysis of transcriptional activation of these profibrotic genes by radiation and TGF-β. Irradiation of HepG2 cells led to a high increase in PAI-1 mRNA levels and a mild increase in Timp-1 mRNA levels. In contrast, TGF-β1 and Smad7 were not increased. Radiation and TGF-β showed strong cooperative effects in transcription of the PAI-1 gene. The TGF-β1 gene showed a mild cooperative activation, whereas Timp-1 and Smad7 were not cooperatively activated by radiation and TGF-β. Analysis using the proximal 800 bp of the human PAI-1 promoter revealed a dose-dependent increase of PAI-1 levels between 2 and 32 Gy γ-rays that was independent of latent TGF-β activation. Subsequent site-directed mutagenesis of the PAI-1 promoter revealed that mutation of a p53-binding element abolished radiation-induced PAI-1 transcription. In line with this, PAI-1 was not activated in p53-null Hep3B cells, indicating that p53 underlies the radiation-induced PAI-1 activation and the cooperativity with the TGF-β/Smad pathway. Together, these data show that radiation and TGF-β activate PAI-1 via partially nonoverlapping signaling cascades that in concert synergize on PAI-1 transcription. This may play a role in patient-to-patient variations in susceptibility toward fibrosis after radiotherapy.
doi_str_mv 10.1158/1078-0432.CCR-05-0427
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21194105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21194105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-5d9437d3141cf3655f3589500dd2cb51ab666d9960cb1de073a070ef0c5db9833</originalsourceid><addsrcrecordid>eNpFkcFu1DAQhi0EoqXwCCCfkDik2HGcrI9VRJdKlaiqcrYce7IxytrL2NuKh-BleBCeCUfZipPn8P3fyP8Q8p6zS87l5jNn3aZijagv-_6-YrLMdfeCnHMpu0rUrXxZ5mfmjLxJ6QdjvOGseU3OeFscSqhz8vveOG-yj4Ga4OgDmpDGiHsfdnSL8SlP9NrYHLH6-4f2MR4ATQbqw4pa9IclbGZ6ZbN_XE1xpHkCeodx9APG7C29m00q0riD8ExGpDdh8oNf7JxuIcBb8mo0c4J3p_eCfL_-8tB_rW6_bW_6q9vKNh3PlXSqEZ0T5Tt2FK2Uo5AbJRlzrraD5GZo29Yp1TI7cAesE4Z1DEZmpRvURogL8nH1HjD-PELKeu-ThXk2AeIx6ZpzVaqSBZQraDGmhDDqA_q9wV-aM73cQS8d66VjXe6gmdTLHUruw2nBcdiD-586FV-ATysw-d305BG0NcECIiQwaKciL7CWSrbiH5IKlMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21194105</pqid></control><display><type>article</type><title>Radiation and Transforming Growth Factor-β Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hageman, Jurre ; Eggen, Bart J ; Rozema, Tom ; Damman, Kevin ; Kampinga, Harm H ; Coppes, Robert P</creator><creatorcontrib>Hageman, Jurre ; Eggen, Bart J ; Rozema, Tom ; Damman, Kevin ; Kampinga, Harm H ; Coppes, Robert P</creatorcontrib><description>Radiation-induced fibrosis is an important side effect in the treatment of cancer. Profibrotic proteins, such as plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β (TGF-β), and tissue type inhibitor of metalloproteinases-1 (Timp-1), are thought to play major roles in the development of fibrosis via the modulation of extracellular matrix integrity. We did a detailed analysis of transcriptional activation of these profibrotic genes by radiation and TGF-β. Irradiation of HepG2 cells led to a high increase in PAI-1 mRNA levels and a mild increase in Timp-1 mRNA levels. In contrast, TGF-β1 and Smad7 were not increased. Radiation and TGF-β showed strong cooperative effects in transcription of the PAI-1 gene. The TGF-β1 gene showed a mild cooperative activation, whereas Timp-1 and Smad7 were not cooperatively activated by radiation and TGF-β. Analysis using the proximal 800 bp of the human PAI-1 promoter revealed a dose-dependent increase of PAI-1 levels between 2 and 32 Gy γ-rays that was independent of latent TGF-β activation. Subsequent site-directed mutagenesis of the PAI-1 promoter revealed that mutation of a p53-binding element abolished radiation-induced PAI-1 transcription. In line with this, PAI-1 was not activated in p53-null Hep3B cells, indicating that p53 underlies the radiation-induced PAI-1 activation and the cooperativity with the TGF-β/Smad pathway. Together, these data show that radiation and TGF-β activate PAI-1 via partially nonoverlapping signaling cascades that in concert synergize on PAI-1 transcription. This may play a role in patient-to-patient variations in susceptibility toward fibrosis after radiotherapy.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-05-0427</identifier><identifier>PMID: 16115939</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Blotting, Western ; Cell Line, Tumor ; Dose-Response Relationship, Radiation ; fibrosis ; Gamma Rays ; Gene Expression - drug effects ; Gene Expression - genetics ; Gene Expression - radiation effects ; Humans ; Luciferases - genetics ; Luciferases - metabolism ; Mutation ; PAI-1 ; Plasminogen Activator Inhibitor 1 - genetics ; Plasminogen activator inhibitor-1 ; Promoter Regions, Genetic - genetics ; radiation ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Smad7 Protein - genetics ; Time Factors ; Tissue Inhibitor of Metalloproteinase-1 - genetics ; Transcriptional Activation - drug effects ; Transcriptional Activation - genetics ; Transcriptional Activation - radiation effects ; Transforming Growth Factor beta - genetics ; Transforming Growth Factor beta - pharmacology ; Transforming Growth Factor beta1 ; Transforming growth factor-β ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Clinical cancer research, 2005-08, Vol.11 (16), p.5956-5964</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-5d9437d3141cf3655f3589500dd2cb51ab666d9960cb1de073a070ef0c5db9833</citedby><cites>FETCH-LOGICAL-c471t-5d9437d3141cf3655f3589500dd2cb51ab666d9960cb1de073a070ef0c5db9833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16115939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hageman, Jurre</creatorcontrib><creatorcontrib>Eggen, Bart J</creatorcontrib><creatorcontrib>Rozema, Tom</creatorcontrib><creatorcontrib>Damman, Kevin</creatorcontrib><creatorcontrib>Kampinga, Harm H</creatorcontrib><creatorcontrib>Coppes, Robert P</creatorcontrib><title>Radiation and Transforming Growth Factor-β Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Radiation-induced fibrosis is an important side effect in the treatment of cancer. Profibrotic proteins, such as plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β (TGF-β), and tissue type inhibitor of metalloproteinases-1 (Timp-1), are thought to play major roles in the development of fibrosis via the modulation of extracellular matrix integrity. We did a detailed analysis of transcriptional activation of these profibrotic genes by radiation and TGF-β. Irradiation of HepG2 cells led to a high increase in PAI-1 mRNA levels and a mild increase in Timp-1 mRNA levels. In contrast, TGF-β1 and Smad7 were not increased. Radiation and TGF-β showed strong cooperative effects in transcription of the PAI-1 gene. The TGF-β1 gene showed a mild cooperative activation, whereas Timp-1 and Smad7 were not cooperatively activated by radiation and TGF-β. Analysis using the proximal 800 bp of the human PAI-1 promoter revealed a dose-dependent increase of PAI-1 levels between 2 and 32 Gy γ-rays that was independent of latent TGF-β activation. Subsequent site-directed mutagenesis of the PAI-1 promoter revealed that mutation of a p53-binding element abolished radiation-induced PAI-1 transcription. In line with this, PAI-1 was not activated in p53-null Hep3B cells, indicating that p53 underlies the radiation-induced PAI-1 activation and the cooperativity with the TGF-β/Smad pathway. Together, these data show that radiation and TGF-β activate PAI-1 via partially nonoverlapping signaling cascades that in concert synergize on PAI-1 transcription. This may play a role in patient-to-patient variations in susceptibility toward fibrosis after radiotherapy.</description><subject>Blotting, Western</subject><subject>Cell Line, Tumor</subject><subject>Dose-Response Relationship, Radiation</subject><subject>fibrosis</subject><subject>Gamma Rays</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression - genetics</subject><subject>Gene Expression - radiation effects</subject><subject>Humans</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Mutation</subject><subject>PAI-1</subject><subject>Plasminogen Activator Inhibitor 1 - genetics</subject><subject>Plasminogen activator inhibitor-1</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>radiation</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Smad7 Protein - genetics</subject><subject>Time Factors</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - genetics</subject><subject>Transcriptional Activation - drug effects</subject><subject>Transcriptional Activation - genetics</subject><subject>Transcriptional Activation - radiation effects</subject><subject>Transforming Growth Factor beta - genetics</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transforming Growth Factor beta1</subject><subject>Transforming growth factor-β</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkcFu1DAQhi0EoqXwCCCfkDik2HGcrI9VRJdKlaiqcrYce7IxytrL2NuKh-BleBCeCUfZipPn8P3fyP8Q8p6zS87l5jNn3aZijagv-_6-YrLMdfeCnHMpu0rUrXxZ5mfmjLxJ6QdjvOGseU3OeFscSqhz8vveOG-yj4Ga4OgDmpDGiHsfdnSL8SlP9NrYHLH6-4f2MR4ATQbqw4pa9IclbGZ6ZbN_XE1xpHkCeodx9APG7C29m00q0riD8ExGpDdh8oNf7JxuIcBb8mo0c4J3p_eCfL_-8tB_rW6_bW_6q9vKNh3PlXSqEZ0T5Tt2FK2Uo5AbJRlzrraD5GZo29Yp1TI7cAesE4Z1DEZmpRvURogL8nH1HjD-PELKeu-ThXk2AeIx6ZpzVaqSBZQraDGmhDDqA_q9wV-aM73cQS8d66VjXe6gmdTLHUruw2nBcdiD-586FV-ATysw-d305BG0NcECIiQwaKciL7CWSrbiH5IKlMc</recordid><startdate>20050815</startdate><enddate>20050815</enddate><creator>Hageman, Jurre</creator><creator>Eggen, Bart J</creator><creator>Rozema, Tom</creator><creator>Damman, Kevin</creator><creator>Kampinga, Harm H</creator><creator>Coppes, Robert P</creator><general>American Association for Cancer Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050815</creationdate><title>Radiation and Transforming Growth Factor-β Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene</title><author>Hageman, Jurre ; Eggen, Bart J ; Rozema, Tom ; Damman, Kevin ; Kampinga, Harm H ; Coppes, Robert P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-5d9437d3141cf3655f3589500dd2cb51ab666d9960cb1de073a070ef0c5db9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blotting, Western</topic><topic>Cell Line, Tumor</topic><topic>Dose-Response Relationship, Radiation</topic><topic>fibrosis</topic><topic>Gamma Rays</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression - genetics</topic><topic>Gene Expression - radiation effects</topic><topic>Humans</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Mutation</topic><topic>PAI-1</topic><topic>Plasminogen Activator Inhibitor 1 - genetics</topic><topic>Plasminogen activator inhibitor-1</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>radiation</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Smad7 Protein - genetics</topic><topic>Time Factors</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - genetics</topic><topic>Transcriptional Activation - drug effects</topic><topic>Transcriptional Activation - genetics</topic><topic>Transcriptional Activation - radiation effects</topic><topic>Transforming Growth Factor beta - genetics</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transforming Growth Factor beta1</topic><topic>Transforming growth factor-β</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hageman, Jurre</creatorcontrib><creatorcontrib>Eggen, Bart J</creatorcontrib><creatorcontrib>Rozema, Tom</creatorcontrib><creatorcontrib>Damman, Kevin</creatorcontrib><creatorcontrib>Kampinga, Harm H</creatorcontrib><creatorcontrib>Coppes, Robert P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hageman, Jurre</au><au>Eggen, Bart J</au><au>Rozema, Tom</au><au>Damman, Kevin</au><au>Kampinga, Harm H</au><au>Coppes, Robert P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation and Transforming Growth Factor-β Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2005-08-15</date><risdate>2005</risdate><volume>11</volume><issue>16</issue><spage>5956</spage><epage>5964</epage><pages>5956-5964</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Radiation-induced fibrosis is an important side effect in the treatment of cancer. Profibrotic proteins, such as plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β (TGF-β), and tissue type inhibitor of metalloproteinases-1 (Timp-1), are thought to play major roles in the development of fibrosis via the modulation of extracellular matrix integrity. We did a detailed analysis of transcriptional activation of these profibrotic genes by radiation and TGF-β. Irradiation of HepG2 cells led to a high increase in PAI-1 mRNA levels and a mild increase in Timp-1 mRNA levels. In contrast, TGF-β1 and Smad7 were not increased. Radiation and TGF-β showed strong cooperative effects in transcription of the PAI-1 gene. The TGF-β1 gene showed a mild cooperative activation, whereas Timp-1 and Smad7 were not cooperatively activated by radiation and TGF-β. Analysis using the proximal 800 bp of the human PAI-1 promoter revealed a dose-dependent increase of PAI-1 levels between 2 and 32 Gy γ-rays that was independent of latent TGF-β activation. Subsequent site-directed mutagenesis of the PAI-1 promoter revealed that mutation of a p53-binding element abolished radiation-induced PAI-1 transcription. In line with this, PAI-1 was not activated in p53-null Hep3B cells, indicating that p53 underlies the radiation-induced PAI-1 activation and the cooperativity with the TGF-β/Smad pathway. Together, these data show that radiation and TGF-β activate PAI-1 via partially nonoverlapping signaling cascades that in concert synergize on PAI-1 transcription. This may play a role in patient-to-patient variations in susceptibility toward fibrosis after radiotherapy.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>16115939</pmid><doi>10.1158/1078-0432.CCR-05-0427</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2005-08, Vol.11 (16), p.5956-5964
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_21194105
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Blotting, Western
Cell Line, Tumor
Dose-Response Relationship, Radiation
fibrosis
Gamma Rays
Gene Expression - drug effects
Gene Expression - genetics
Gene Expression - radiation effects
Humans
Luciferases - genetics
Luciferases - metabolism
Mutation
PAI-1
Plasminogen Activator Inhibitor 1 - genetics
Plasminogen activator inhibitor-1
Promoter Regions, Genetic - genetics
radiation
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
Smad7 Protein - genetics
Time Factors
Tissue Inhibitor of Metalloproteinase-1 - genetics
Transcriptional Activation - drug effects
Transcriptional Activation - genetics
Transcriptional Activation - radiation effects
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - pharmacology
Transforming Growth Factor beta1
Transforming growth factor-β
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
title Radiation and Transforming Growth Factor-β Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20and%20Transforming%20Growth%20Factor-%CE%B2%20Cooperate%20in%20Transcriptional%20Activation%20of%20the%20Profibrotic%20Plasminogen%20Activator%20Inhibitor-1%20Gene&rft.jtitle=Clinical%20cancer%20research&rft.au=Hageman,%20Jurre&rft.date=2005-08-15&rft.volume=11&rft.issue=16&rft.spage=5956&rft.epage=5964&rft.pages=5956-5964&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-05-0427&rft_dat=%3Cproquest_cross%3E21194105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21194105&rft_id=info:pmid/16115939&rfr_iscdi=true