When Should Prey Respond to Consumed Heterospecifics? Testing Hypotheses of Perceived Risk
In aquatic systems, a long-standing question is why chemical cues from some diets consumed by a predator induce strong anti-predator responses in prey while other diets induce weak or no responses. We performed an experiment to determine if strong prey responses to particular predator diets are due...
Gespeichert in:
Veröffentlicht in: | Copeia 2009-02, Vol.2009 (1), p.190-194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 190 |
container_title | Copeia |
container_volume | 2009 |
creator | Schoeppner, NancyM Relyea, RickA |
description | In aquatic systems, a long-standing question is why chemical cues from some diets consumed by a predator induce strong anti-predator responses in prey while other diets induce weak or no responses. We performed an experiment to determine if strong prey responses to particular predator diets are due to prey being closely related to the predator's diet (i.e., phylogenetic relatedness) or due to prey coexisting with the predator's diet and thereby sharing a risk of predation. We compared the behavior of Gray Treefrog tadpoles (Hyla versicolor) to cues from a dragonfly nymph (Anax junius) that consumed either conspecific Gray Treefrogs, one of six diets that commonly coexist with Gray Treefrogs (spanning a wide range of phylogenetic relatedness), or one diet that is closely related to Gray Treefrogs but has an allopatric range that has not overlapped for at least 20,000 yrs. We found that tadpoles could discriminate among the diets and that the magnitude of behavioral response supported the hypothesis of diet phylogenetic relatedness and refuted the hypothesis of diet coexistence. |
doi_str_mv | 10.1643/CE-08-041 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_21189050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25512211</jstor_id><sourcerecordid>25512211</sourcerecordid><originalsourceid>FETCH-LOGICAL-b447t-62997781ffac717df0741579555259fce08f0f1d88931efbebc4b90aaca96fff3</originalsourceid><addsrcrecordid>eNp9kEFr20AQhZfSQF0nh_6AwpJDSw5KZiSttXsqQThxIBDjOAR6WaTVbC3X1iq7UsH_vhsceughp2F437x5M4x9QbjEWZ5dlfMEZAI5fmATVJlMBCJ8ZBOAXCQyNp_Y5xC2AFBIFBP283lDHX_cuHHX8KWnA19R6F3X8MHx0nVh3FPDFzSQd6En09rWhB98TWFou198cejdsKFAgTvLl-QNtX_iwKoNv0_Zia12gc7e6pQ93czX5SK5f7i9K6_vkzrPiyGZpUoVMYy1lSmwaCwUOYpCCSFSoawhkBYsNlKqDMnWVJu8VlBVplIza202Zd-Ovr13L2MMpvdtMLTbVR25MegUUSoQEMHz_8CtG30Xs-kUijTPMMUIXRwhEw8Onqzufbuv_EEj6NcX63KuQer44sh-PbLbMDj_D0yFwDRujfr3o163znX0jtNfkVGD4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207243121</pqid></control><display><type>article</type><title>When Should Prey Respond to Consumed Heterospecifics? Testing Hypotheses of Perceived Risk</title><source>BioOne Complete</source><source>JSTOR</source><creator>Schoeppner, NancyM ; Relyea, RickA</creator><creatorcontrib>Schoeppner, NancyM ; Relyea, RickA</creatorcontrib><description>In aquatic systems, a long-standing question is why chemical cues from some diets consumed by a predator induce strong anti-predator responses in prey while other diets induce weak or no responses. We performed an experiment to determine if strong prey responses to particular predator diets are due to prey being closely related to the predator's diet (i.e., phylogenetic relatedness) or due to prey coexisting with the predator's diet and thereby sharing a risk of predation. We compared the behavior of Gray Treefrog tadpoles (Hyla versicolor) to cues from a dragonfly nymph (Anax junius) that consumed either conspecific Gray Treefrogs, one of six diets that commonly coexist with Gray Treefrogs (spanning a wide range of phylogenetic relatedness), or one diet that is closely related to Gray Treefrogs but has an allopatric range that has not overlapped for at least 20,000 yrs. We found that tadpoles could discriminate among the diets and that the magnitude of behavioral response supported the hypothesis of diet phylogenetic relatedness and refuted the hypothesis of diet coexistence.</description><identifier>ISSN: 0045-8511</identifier><identifier>ISSN: 2766-1512</identifier><identifier>EISSN: 1938-5110</identifier><identifier>EISSN: 2766-1520</identifier><identifier>DOI: 10.1643/CE-08-041</identifier><language>eng</language><publisher>810 East 10th Street, P.O. Box 1897, Lawrence, Kansas 66044: The American Society of Ichthyologists and Herpetologists</publisher><subject>Amphibians ; Anax junius ; Animal behavior ; Biological taxonomies ; Birds ; Chemical ecology ; Chemicals ; Diet ; Hyla versicolor ; Hypotheses ; Larvae ; Marine ecology ; Odonata ; Phylogenetics ; Predation ; Predators ; s ; Studies ; Tadpoles</subject><ispartof>Copeia, 2009-02, Vol.2009 (1), p.190-194</ispartof><rights>2009 by the American Society of Ichthyologists and Herpetologists</rights><rights>Copyright 2009 The American Society of Ichthyologists and Herpetologists</rights><rights>Copyright American Society of Ichthyologists and Herpetologists Feb 23, 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b447t-62997781ffac717df0741579555259fce08f0f1d88931efbebc4b90aaca96fff3</citedby><cites>FETCH-LOGICAL-b447t-62997781ffac717df0741579555259fce08f0f1d88931efbebc4b90aaca96fff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1643/CE-08-041$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25512211$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,26977,27923,27924,52362,58016,58249</link.rule.ids></links><search><creatorcontrib>Schoeppner, NancyM</creatorcontrib><creatorcontrib>Relyea, RickA</creatorcontrib><title>When Should Prey Respond to Consumed Heterospecifics? Testing Hypotheses of Perceived Risk</title><title>Copeia</title><description>In aquatic systems, a long-standing question is why chemical cues from some diets consumed by a predator induce strong anti-predator responses in prey while other diets induce weak or no responses. We performed an experiment to determine if strong prey responses to particular predator diets are due to prey being closely related to the predator's diet (i.e., phylogenetic relatedness) or due to prey coexisting with the predator's diet and thereby sharing a risk of predation. We compared the behavior of Gray Treefrog tadpoles (Hyla versicolor) to cues from a dragonfly nymph (Anax junius) that consumed either conspecific Gray Treefrogs, one of six diets that commonly coexist with Gray Treefrogs (spanning a wide range of phylogenetic relatedness), or one diet that is closely related to Gray Treefrogs but has an allopatric range that has not overlapped for at least 20,000 yrs. We found that tadpoles could discriminate among the diets and that the magnitude of behavioral response supported the hypothesis of diet phylogenetic relatedness and refuted the hypothesis of diet coexistence.</description><subject>Amphibians</subject><subject>Anax junius</subject><subject>Animal behavior</subject><subject>Biological taxonomies</subject><subject>Birds</subject><subject>Chemical ecology</subject><subject>Chemicals</subject><subject>Diet</subject><subject>Hyla versicolor</subject><subject>Hypotheses</subject><subject>Larvae</subject><subject>Marine ecology</subject><subject>Odonata</subject><subject>Phylogenetics</subject><subject>Predation</subject><subject>Predators</subject><subject>s</subject><subject>Studies</subject><subject>Tadpoles</subject><issn>0045-8511</issn><issn>2766-1512</issn><issn>1938-5110</issn><issn>2766-1520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFr20AQhZfSQF0nh_6AwpJDSw5KZiSttXsqQThxIBDjOAR6WaTVbC3X1iq7UsH_vhsceughp2F437x5M4x9QbjEWZ5dlfMEZAI5fmATVJlMBCJ8ZBOAXCQyNp_Y5xC2AFBIFBP283lDHX_cuHHX8KWnA19R6F3X8MHx0nVh3FPDFzSQd6En09rWhB98TWFou198cejdsKFAgTvLl-QNtX_iwKoNv0_Zia12gc7e6pQ93czX5SK5f7i9K6_vkzrPiyGZpUoVMYy1lSmwaCwUOYpCCSFSoawhkBYsNlKqDMnWVJu8VlBVplIza202Zd-Ovr13L2MMpvdtMLTbVR25MegUUSoQEMHz_8CtG30Xs-kUijTPMMUIXRwhEw8Onqzufbuv_EEj6NcX63KuQer44sh-PbLbMDj_D0yFwDRujfr3o163znX0jtNfkVGD4A</recordid><startdate>20090223</startdate><enddate>20090223</enddate><creator>Schoeppner, NancyM</creator><creator>Relyea, RickA</creator><general>The American Society of Ichthyologists and Herpetologists</general><general>American Society of Ichthyologists and Herpetologists</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7TK</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7SS</scope></search><sort><creationdate>20090223</creationdate><title>When Should Prey Respond to Consumed Heterospecifics? Testing Hypotheses of Perceived Risk</title><author>Schoeppner, NancyM ; Relyea, RickA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b447t-62997781ffac717df0741579555259fce08f0f1d88931efbebc4b90aaca96fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amphibians</topic><topic>Anax junius</topic><topic>Animal behavior</topic><topic>Biological taxonomies</topic><topic>Birds</topic><topic>Chemical ecology</topic><topic>Chemicals</topic><topic>Diet</topic><topic>Hyla versicolor</topic><topic>Hypotheses</topic><topic>Larvae</topic><topic>Marine ecology</topic><topic>Odonata</topic><topic>Phylogenetics</topic><topic>Predation</topic><topic>Predators</topic><topic>s</topic><topic>Studies</topic><topic>Tadpoles</topic><toplevel>online_resources</toplevel><creatorcontrib>Schoeppner, NancyM</creatorcontrib><creatorcontrib>Relyea, RickA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Copeia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoeppner, NancyM</au><au>Relyea, RickA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Should Prey Respond to Consumed Heterospecifics? Testing Hypotheses of Perceived Risk</atitle><jtitle>Copeia</jtitle><date>2009-02-23</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>190</spage><epage>194</epage><pages>190-194</pages><issn>0045-8511</issn><issn>2766-1512</issn><eissn>1938-5110</eissn><eissn>2766-1520</eissn><abstract>In aquatic systems, a long-standing question is why chemical cues from some diets consumed by a predator induce strong anti-predator responses in prey while other diets induce weak or no responses. We performed an experiment to determine if strong prey responses to particular predator diets are due to prey being closely related to the predator's diet (i.e., phylogenetic relatedness) or due to prey coexisting with the predator's diet and thereby sharing a risk of predation. We compared the behavior of Gray Treefrog tadpoles (Hyla versicolor) to cues from a dragonfly nymph (Anax junius) that consumed either conspecific Gray Treefrogs, one of six diets that commonly coexist with Gray Treefrogs (spanning a wide range of phylogenetic relatedness), or one diet that is closely related to Gray Treefrogs but has an allopatric range that has not overlapped for at least 20,000 yrs. We found that tadpoles could discriminate among the diets and that the magnitude of behavioral response supported the hypothesis of diet phylogenetic relatedness and refuted the hypothesis of diet coexistence.</abstract><cop>810 East 10th Street, P.O. Box 1897, Lawrence, Kansas 66044</cop><pub>The American Society of Ichthyologists and Herpetologists</pub><doi>10.1643/CE-08-041</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-8511 |
ispartof | Copeia, 2009-02, Vol.2009 (1), p.190-194 |
issn | 0045-8511 2766-1512 1938-5110 2766-1520 |
language | eng |
recordid | cdi_proquest_miscellaneous_21189050 |
source | BioOne Complete; JSTOR |
subjects | Amphibians Anax junius Animal behavior Biological taxonomies Birds Chemical ecology Chemicals Diet Hyla versicolor Hypotheses Larvae Marine ecology Odonata Phylogenetics Predation Predators s Studies Tadpoles |
title | When Should Prey Respond to Consumed Heterospecifics? Testing Hypotheses of Perceived Risk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Should%20Prey%20Respond%20to%20Consumed%20Heterospecifics?%20Testing%20Hypotheses%20of%20Perceived%20Risk&rft.jtitle=Copeia&rft.au=Schoeppner,%20NancyM&rft.date=2009-02-23&rft.volume=2009&rft.issue=1&rft.spage=190&rft.epage=194&rft.pages=190-194&rft.issn=0045-8511&rft.eissn=1938-5110&rft_id=info:doi/10.1643/CE-08-041&rft_dat=%3Cjstor_proqu%3E25512211%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207243121&rft_id=info:pmid/&rft_jstor_id=25512211&rfr_iscdi=true |