Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2018-12, Vol.102 (24), p.10645-10663
Hauptverfasser: Egan, Muireann, Bottacini, Francesca, O’Connell Motherway, Mary, Casey, Patrick G., Morrissey, Ruth, Melgar, Silvia, Faurie, Jean-Michel, Chervaux, Christian, Smokvina, Tamara, van Sinderen, Douwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10663
container_issue 24
container_start_page 10645
container_title Applied microbiology and biotechnology
container_volume 102
creator Egan, Muireann
Bottacini, Francesca
O’Connell Motherway, Mary
Casey, Patrick G.
Morrissey, Ruth
Melgar, Silvia
Faurie, Jean-Michel
Chervaux, Christian
Smokvina, Tamara
van Sinderen, Douwe
description Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.
doi_str_mv 10.1007/s00253-018-9413-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2118313463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A566600458</galeid><sourcerecordid>A566600458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-6b2d37f0a1b9f0517a3a2dd496e1414c93a98fab9e6c644f407f47cb2e81185f3</originalsourceid><addsrcrecordid>eNp1kk9v1DAQxS0EokvhA3BBkbjAIcs4duyEW1vxp1IlJApny3Hs4CqxF9sJ9NvjdAurRSAfrPH83pNn9BB6jmGLAfibCFDVpATclC3FpOQP0AZTUpXAMH2INoB5XfK6bU7QkxhvAHDVMPYYnRAgwCrAG5Suk7y1bijkaBf9thiC_5G-FdL1RZzDYhc5Ft4U59bY3ndSJR3sPOW-nbIiZqiLu-2hnl2vQ2FdsdgU_J3PXbH4QnnX22S9i0_RIyPHqJ_d36fo6_t3Xy4-llefPlxenF2VqsaQStZVPeEGJO5aAzXmksiq72nLNKaYqpbItjGyazVTjFJDgRvKVVfpBuOmNuQUvdr77oL_PuuYxGSj0uMonfZzFFXGCCaUkYy-_Au98XNw-XcrxVn25s2BGuSohXXGpyDVairOasYYAK1XavsPKp9eTzZvQRub348Er48EmUn6ZxrkHKO4vP58zOI9q4KPMWgjdiHvPtwKDGJNhdinQuRUiDUVgmfNi_vh5m7S_R_F7xhkoNoDMbfcoMNh-v-7_gLjkb_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117640778</pqid></control><display><type>article</type><title>Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Egan, Muireann ; Bottacini, Francesca ; O’Connell Motherway, Mary ; Casey, Patrick G. ; Morrissey, Ruth ; Melgar, Silvia ; Faurie, Jean-Michel ; Chervaux, Christian ; Smokvina, Tamara ; van Sinderen, Douwe</creator><creatorcontrib>Egan, Muireann ; Bottacini, Francesca ; O’Connell Motherway, Mary ; Casey, Patrick G. ; Morrissey, Ruth ; Melgar, Silvia ; Faurie, Jean-Michel ; Chervaux, Christian ; Smokvina, Tamara ; van Sinderen, Douwe</creatorcontrib><description>Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-018-9413-7</identifier><identifier>PMID: 30306201</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal models ; Animals ; Bifidobacteria ; Bifidobacterium animalis ; Bifidobacterium animalis - drug effects ; Bifidobacterium animalis - genetics ; Bifidobacterium animalis - growth &amp; development ; Biomedical and Life Sciences ; Biotechnology ; Carbohydrate Metabolism ; Carbohydrates ; Colonization ; Drug Resistance, Microbial ; Female ; Fermented milk products ; Ferrous sulfate ; Food Microbiology - methods ; Gastrointestinal Microbiome ; Gastrointestinal system ; Gastrointestinal tract ; Gene clusters ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genetic aspects ; Genome, Bacterial ; Genomes ; Genomics ; Glutathione ; Growth ; Iron sulfates ; Lactose ; Life Sciences ; Magnesium sulfate ; Manganese ; Manganese sulfate ; Mice, Inbred BALB C ; Microbial Genetics and Genomics ; Microbiology ; Milk ; Milk - microbiology ; Milk products ; Phenotypes ; Physiological aspects ; Probiotics ; Proteomics ; Sulfates ; Survival ; Transcriptomics ; Uric acid ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2018-12, Vol.102 (24), p.10645-10663</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-6b2d37f0a1b9f0517a3a2dd496e1414c93a98fab9e6c644f407f47cb2e81185f3</citedby><cites>FETCH-LOGICAL-c510t-6b2d37f0a1b9f0517a3a2dd496e1414c93a98fab9e6c644f407f47cb2e81185f3</cites><orcidid>0000-0002-0142-2956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-018-9413-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-018-9413-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30306201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egan, Muireann</creatorcontrib><creatorcontrib>Bottacini, Francesca</creatorcontrib><creatorcontrib>O’Connell Motherway, Mary</creatorcontrib><creatorcontrib>Casey, Patrick G.</creatorcontrib><creatorcontrib>Morrissey, Ruth</creatorcontrib><creatorcontrib>Melgar, Silvia</creatorcontrib><creatorcontrib>Faurie, Jean-Michel</creatorcontrib><creatorcontrib>Chervaux, Christian</creatorcontrib><creatorcontrib>Smokvina, Tamara</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><title>Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bifidobacteria</subject><subject>Bifidobacterium animalis</subject><subject>Bifidobacterium animalis - drug effects</subject><subject>Bifidobacterium animalis - genetics</subject><subject>Bifidobacterium animalis - growth &amp; development</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Colonization</subject><subject>Drug Resistance, Microbial</subject><subject>Female</subject><subject>Fermented milk products</subject><subject>Ferrous sulfate</subject><subject>Food Microbiology - methods</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal tract</subject><subject>Gene clusters</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glutathione</subject><subject>Growth</subject><subject>Iron sulfates</subject><subject>Lactose</subject><subject>Life Sciences</subject><subject>Magnesium sulfate</subject><subject>Manganese</subject><subject>Manganese sulfate</subject><subject>Mice, Inbred BALB C</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Milk</subject><subject>Milk - microbiology</subject><subject>Milk products</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Probiotics</subject><subject>Proteomics</subject><subject>Sulfates</subject><subject>Survival</subject><subject>Transcriptomics</subject><subject>Uric acid</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kk9v1DAQxS0EokvhA3BBkbjAIcs4duyEW1vxp1IlJApny3Hs4CqxF9sJ9NvjdAurRSAfrPH83pNn9BB6jmGLAfibCFDVpATclC3FpOQP0AZTUpXAMH2INoB5XfK6bU7QkxhvAHDVMPYYnRAgwCrAG5Suk7y1bijkaBf9thiC_5G-FdL1RZzDYhc5Ft4U59bY3ndSJR3sPOW-nbIiZqiLu-2hnl2vQ2FdsdgU_J3PXbH4QnnX22S9i0_RIyPHqJ_d36fo6_t3Xy4-llefPlxenF2VqsaQStZVPeEGJO5aAzXmksiq72nLNKaYqpbItjGyazVTjFJDgRvKVVfpBuOmNuQUvdr77oL_PuuYxGSj0uMonfZzFFXGCCaUkYy-_Au98XNw-XcrxVn25s2BGuSohXXGpyDVairOasYYAK1XavsPKp9eTzZvQRub348Er48EmUn6ZxrkHKO4vP58zOI9q4KPMWgjdiHvPtwKDGJNhdinQuRUiDUVgmfNi_vh5m7S_R_F7xhkoNoDMbfcoMNh-v-7_gLjkb_9</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Egan, Muireann</creator><creator>Bottacini, Francesca</creator><creator>O’Connell Motherway, Mary</creator><creator>Casey, Patrick G.</creator><creator>Morrissey, Ruth</creator><creator>Melgar, Silvia</creator><creator>Faurie, Jean-Michel</creator><creator>Chervaux, Christian</creator><creator>Smokvina, Tamara</creator><creator>van Sinderen, Douwe</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0142-2956</orcidid></search><sort><creationdate>20181201</creationdate><title>Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions</title><author>Egan, Muireann ; Bottacini, Francesca ; O’Connell Motherway, Mary ; Casey, Patrick G. ; Morrissey, Ruth ; Melgar, Silvia ; Faurie, Jean-Michel ; Chervaux, Christian ; Smokvina, Tamara ; van Sinderen, Douwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-6b2d37f0a1b9f0517a3a2dd496e1414c93a98fab9e6c644f407f47cb2e81185f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bifidobacteria</topic><topic>Bifidobacterium animalis</topic><topic>Bifidobacterium animalis - drug effects</topic><topic>Bifidobacterium animalis - genetics</topic><topic>Bifidobacterium animalis - growth &amp; development</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Colonization</topic><topic>Drug Resistance, Microbial</topic><topic>Female</topic><topic>Fermented milk products</topic><topic>Ferrous sulfate</topic><topic>Food Microbiology - methods</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal tract</topic><topic>Gene clusters</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glutathione</topic><topic>Growth</topic><topic>Iron sulfates</topic><topic>Lactose</topic><topic>Life Sciences</topic><topic>Magnesium sulfate</topic><topic>Manganese</topic><topic>Manganese sulfate</topic><topic>Mice, Inbred BALB C</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Milk</topic><topic>Milk - microbiology</topic><topic>Milk products</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Probiotics</topic><topic>Proteomics</topic><topic>Sulfates</topic><topic>Survival</topic><topic>Transcriptomics</topic><topic>Uric acid</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egan, Muireann</creatorcontrib><creatorcontrib>Bottacini, Francesca</creatorcontrib><creatorcontrib>O’Connell Motherway, Mary</creatorcontrib><creatorcontrib>Casey, Patrick G.</creatorcontrib><creatorcontrib>Morrissey, Ruth</creatorcontrib><creatorcontrib>Melgar, Silvia</creatorcontrib><creatorcontrib>Faurie, Jean-Michel</creatorcontrib><creatorcontrib>Chervaux, Christian</creatorcontrib><creatorcontrib>Smokvina, Tamara</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egan, Muireann</au><au>Bottacini, Francesca</au><au>O’Connell Motherway, Mary</au><au>Casey, Patrick G.</au><au>Morrissey, Ruth</au><au>Melgar, Silvia</au><au>Faurie, Jean-Michel</au><au>Chervaux, Christian</au><au>Smokvina, Tamara</au><au>van Sinderen, Douwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>102</volume><issue>24</issue><spage>10645</spage><epage>10663</epage><pages>10645-10663</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30306201</pmid><doi>10.1007/s00253-018-9413-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0142-2956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2018-12, Vol.102 (24), p.10645-10663
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2118313463
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animal models
Animals
Bifidobacteria
Bifidobacterium animalis
Bifidobacterium animalis - drug effects
Bifidobacterium animalis - genetics
Bifidobacterium animalis - growth & development
Biomedical and Life Sciences
Biotechnology
Carbohydrate Metabolism
Carbohydrates
Colonization
Drug Resistance, Microbial
Female
Fermented milk products
Ferrous sulfate
Food Microbiology - methods
Gastrointestinal Microbiome
Gastrointestinal system
Gastrointestinal tract
Gene clusters
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genetic aspects
Genome, Bacterial
Genomes
Genomics
Glutathione
Growth
Iron sulfates
Lactose
Life Sciences
Magnesium sulfate
Manganese
Manganese sulfate
Mice, Inbred BALB C
Microbial Genetics and Genomics
Microbiology
Milk
Milk - microbiology
Milk products
Phenotypes
Physiological aspects
Probiotics
Proteomics
Sulfates
Survival
Transcriptomics
Uric acid
Yeast
Yeasts
title Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Staying%20alive:%20growth%20and%20survival%20of%20Bifidobacterium%20animalis%20subsp.%20animalis%20under%20in%20vitro%20and%20in%20vivo%20conditions&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Egan,%20Muireann&rft.date=2018-12-01&rft.volume=102&rft.issue=24&rft.spage=10645&rft.epage=10663&rft.pages=10645-10663&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-018-9413-7&rft_dat=%3Cgale_proqu%3EA566600458%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117640778&rft_id=info:pmid/30306201&rft_galeid=A566600458&rfr_iscdi=true