Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation
The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2018-11, Vol.39 (29), p.2463-2471 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2471 |
---|---|
container_issue | 29 |
container_start_page | 2463 |
container_title | Journal of computational chemistry |
container_volume | 39 |
creator | Schwalbe, Sebastian Hahn, Torsten Liebing, Simon Trepte, Kai Kortus, Jens |
description | The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc.
The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite. |
doi_str_mv | 10.1002/jcc.25586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2118313107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133087491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</originalsourceid><addsrcrecordid>eNp10cFqFDEYB_Agil2rh76ABLzUw7TJZCaZ9FYWq5WFXip4GzLJF5plJlmTDGV70jfwaXwB38QnMd1tPRQ8feHLjz98_BE6ouSEElKfrrU-qdu248_QghLJK9mJr8_RglBZVx1v6QF6ldKaEMJa3rxEB4wwwlspFujHBcTJ_fn-c_X7161xHoc4uKxGnGC0Ze18hqh0dsFjHWIEncFgAz65vMV29ruv4vMNhLg9w5fBuzu185uQwWenxoSVN7i8b9S4cZBwsNiGOO3Ya_TCFgJvHuYh-nLx4Xr5qVpdfbxcnq8qzVrGK8VqRbhtBtMwBUwOhkI53tKGcEWMVoOgVEgtrBC0No1tJWl5zURRTVNLdoiO97mbGL7NkHI_uaRhHJWHMKe-prRjlFEiCn33hK7DHMuV94ox0olG0qLe75WOIaUItt9EN6m47Snp73vpSy_9rpdi3z4kzsME5p98LKKA0z24dSNs_5_Uf14u95F_Ae-sm0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133087491</pqid></control><display><type>article</type><title>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schwalbe, Sebastian ; Hahn, Torsten ; Liebing, Simon ; Trepte, Kai ; Kortus, Jens</creator><creatorcontrib>Schwalbe, Sebastian ; Hahn, Torsten ; Liebing, Simon ; Trepte, Kai ; Kortus, Jens</creatorcontrib><description>The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc.
The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25586</identifier><identifier>PMID: 30306597</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Density functional theory ; energies of formation ; Enthalpy ; Ionization ; Ionization potentials ; Linearity ; molecules ; self‐interaction correction</subject><ispartof>Journal of computational chemistry, 2018-11, Vol.39 (29), p.2463-2471</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</citedby><cites>FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</cites><orcidid>0000-0002-4561-0158 ; 0000-0002-8989-7402 ; 0000-0003-2214-2467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30306597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwalbe, Sebastian</creatorcontrib><creatorcontrib>Hahn, Torsten</creatorcontrib><creatorcontrib>Liebing, Simon</creatorcontrib><creatorcontrib>Trepte, Kai</creatorcontrib><creatorcontrib>Kortus, Jens</creatorcontrib><title>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc.
The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.</description><subject>Density functional theory</subject><subject>energies of formation</subject><subject>Enthalpy</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Linearity</subject><subject>molecules</subject><subject>self‐interaction correction</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10cFqFDEYB_Agil2rh76ABLzUw7TJZCaZ9FYWq5WFXip4GzLJF5plJlmTDGV70jfwaXwB38QnMd1tPRQ8feHLjz98_BE6ouSEElKfrrU-qdu248_QghLJK9mJr8_RglBZVx1v6QF6ldKaEMJa3rxEB4wwwlspFujHBcTJ_fn-c_X7161xHoc4uKxGnGC0Ze18hqh0dsFjHWIEncFgAz65vMV29ruv4vMNhLg9w5fBuzu185uQwWenxoSVN7i8b9S4cZBwsNiGOO3Ya_TCFgJvHuYh-nLx4Xr5qVpdfbxcnq8qzVrGK8VqRbhtBtMwBUwOhkI53tKGcEWMVoOgVEgtrBC0No1tJWl5zURRTVNLdoiO97mbGL7NkHI_uaRhHJWHMKe-prRjlFEiCn33hK7DHMuV94ox0olG0qLe75WOIaUItt9EN6m47Snp73vpSy_9rpdi3z4kzsME5p98LKKA0z24dSNs_5_Uf14u95F_Ae-sm0I</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Schwalbe, Sebastian</creator><creator>Hahn, Torsten</creator><creator>Liebing, Simon</creator><creator>Trepte, Kai</creator><creator>Kortus, Jens</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4561-0158</orcidid><orcidid>https://orcid.org/0000-0002-8989-7402</orcidid><orcidid>https://orcid.org/0000-0003-2214-2467</orcidid></search><sort><creationdate>20181105</creationdate><title>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</title><author>Schwalbe, Sebastian ; Hahn, Torsten ; Liebing, Simon ; Trepte, Kai ; Kortus, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density functional theory</topic><topic>energies of formation</topic><topic>Enthalpy</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Linearity</topic><topic>molecules</topic><topic>self‐interaction correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwalbe, Sebastian</creatorcontrib><creatorcontrib>Hahn, Torsten</creatorcontrib><creatorcontrib>Liebing, Simon</creatorcontrib><creatorcontrib>Trepte, Kai</creatorcontrib><creatorcontrib>Kortus, Jens</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwalbe, Sebastian</au><au>Hahn, Torsten</au><au>Liebing, Simon</au><au>Trepte, Kai</au><au>Kortus, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-11-05</date><risdate>2018</risdate><volume>39</volume><issue>29</issue><spage>2463</spage><epage>2471</epage><pages>2463-2471</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc.
The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30306597</pmid><doi>10.1002/jcc.25586</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4561-0158</orcidid><orcidid>https://orcid.org/0000-0002-8989-7402</orcidid><orcidid>https://orcid.org/0000-0003-2214-2467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2018-11, Vol.39 (29), p.2463-2471 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_2118313107 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Density functional theory energies of formation Enthalpy Ionization Ionization potentials Linearity molecules self‐interaction correction |
title | Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%E2%80%90L%C3%B6wdin%20orbital%20self%E2%80%90interaction%20corrected%20density%20functional%20theory:%20Ionization%20potentials%20and%20enthalpies%20of%20formation&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Schwalbe,%20Sebastian&rft.date=2018-11-05&rft.volume=39&rft.issue=29&rft.spage=2463&rft.epage=2471&rft.pages=2463-2471&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25586&rft_dat=%3Cproquest_cross%3E2133087491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133087491&rft_id=info:pmid/30306597&rfr_iscdi=true |