Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation

The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2018-11, Vol.39 (29), p.2463-2471
Hauptverfasser: Schwalbe, Sebastian, Hahn, Torsten, Liebing, Simon, Trepte, Kai, Kortus, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2471
container_issue 29
container_start_page 2463
container_title Journal of computational chemistry
container_volume 39
creator Schwalbe, Sebastian
Hahn, Torsten
Liebing, Simon
Trepte, Kai
Kortus, Jens
description The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc. The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.
doi_str_mv 10.1002/jcc.25586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2118313107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133087491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</originalsourceid><addsrcrecordid>eNp10cFqFDEYB_Agil2rh76ABLzUw7TJZCaZ9FYWq5WFXip4GzLJF5plJlmTDGV70jfwaXwB38QnMd1tPRQ8feHLjz98_BE6ouSEElKfrrU-qdu248_QghLJK9mJr8_RglBZVx1v6QF6ldKaEMJa3rxEB4wwwlspFujHBcTJ_fn-c_X7161xHoc4uKxGnGC0Ze18hqh0dsFjHWIEncFgAz65vMV29ruv4vMNhLg9w5fBuzu185uQwWenxoSVN7i8b9S4cZBwsNiGOO3Ya_TCFgJvHuYh-nLx4Xr5qVpdfbxcnq8qzVrGK8VqRbhtBtMwBUwOhkI53tKGcEWMVoOgVEgtrBC0No1tJWl5zURRTVNLdoiO97mbGL7NkHI_uaRhHJWHMKe-prRjlFEiCn33hK7DHMuV94ox0olG0qLe75WOIaUItt9EN6m47Snp73vpSy_9rpdi3z4kzsME5p98LKKA0z24dSNs_5_Uf14u95F_Ae-sm0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133087491</pqid></control><display><type>article</type><title>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schwalbe, Sebastian ; Hahn, Torsten ; Liebing, Simon ; Trepte, Kai ; Kortus, Jens</creator><creatorcontrib>Schwalbe, Sebastian ; Hahn, Torsten ; Liebing, Simon ; Trepte, Kai ; Kortus, Jens</creatorcontrib><description>The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc. The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25586</identifier><identifier>PMID: 30306597</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Density functional theory ; energies of formation ; Enthalpy ; Ionization ; Ionization potentials ; Linearity ; molecules ; self‐interaction correction</subject><ispartof>Journal of computational chemistry, 2018-11, Vol.39 (29), p.2463-2471</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</citedby><cites>FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</cites><orcidid>0000-0002-4561-0158 ; 0000-0002-8989-7402 ; 0000-0003-2214-2467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30306597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwalbe, Sebastian</creatorcontrib><creatorcontrib>Hahn, Torsten</creatorcontrib><creatorcontrib>Liebing, Simon</creatorcontrib><creatorcontrib>Trepte, Kai</creatorcontrib><creatorcontrib>Kortus, Jens</creatorcontrib><title>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc. The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.</description><subject>Density functional theory</subject><subject>energies of formation</subject><subject>Enthalpy</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Linearity</subject><subject>molecules</subject><subject>self‐interaction correction</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10cFqFDEYB_Agil2rh76ABLzUw7TJZCaZ9FYWq5WFXip4GzLJF5plJlmTDGV70jfwaXwB38QnMd1tPRQ8feHLjz98_BE6ouSEElKfrrU-qdu248_QghLJK9mJr8_RglBZVx1v6QF6ldKaEMJa3rxEB4wwwlspFujHBcTJ_fn-c_X7161xHoc4uKxGnGC0Ze18hqh0dsFjHWIEncFgAz65vMV29ruv4vMNhLg9w5fBuzu185uQwWenxoSVN7i8b9S4cZBwsNiGOO3Ya_TCFgJvHuYh-nLx4Xr5qVpdfbxcnq8qzVrGK8VqRbhtBtMwBUwOhkI53tKGcEWMVoOgVEgtrBC0No1tJWl5zURRTVNLdoiO97mbGL7NkHI_uaRhHJWHMKe-prRjlFEiCn33hK7DHMuV94ox0olG0qLe75WOIaUItt9EN6m47Snp73vpSy_9rpdi3z4kzsME5p98LKKA0z24dSNs_5_Uf14u95F_Ae-sm0I</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Schwalbe, Sebastian</creator><creator>Hahn, Torsten</creator><creator>Liebing, Simon</creator><creator>Trepte, Kai</creator><creator>Kortus, Jens</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4561-0158</orcidid><orcidid>https://orcid.org/0000-0002-8989-7402</orcidid><orcidid>https://orcid.org/0000-0003-2214-2467</orcidid></search><sort><creationdate>20181105</creationdate><title>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</title><author>Schwalbe, Sebastian ; Hahn, Torsten ; Liebing, Simon ; Trepte, Kai ; Kortus, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-a32a06f4bd43ae39bd1e100f1406a0dcab71179c7f7712d4f59056237e1044293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density functional theory</topic><topic>energies of formation</topic><topic>Enthalpy</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Linearity</topic><topic>molecules</topic><topic>self‐interaction correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwalbe, Sebastian</creatorcontrib><creatorcontrib>Hahn, Torsten</creatorcontrib><creatorcontrib>Liebing, Simon</creatorcontrib><creatorcontrib>Trepte, Kai</creatorcontrib><creatorcontrib>Kortus, Jens</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwalbe, Sebastian</au><au>Hahn, Torsten</au><au>Liebing, Simon</au><au>Trepte, Kai</au><au>Kortus, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-11-05</date><risdate>2018</risdate><volume>39</volume><issue>29</issue><spage>2463</spage><epage>2471</epage><pages>2463-2471</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The Fermi‐Löwdin orbital self‐interaction correction (FLO‐SIC) methodology is applied to atoms and molecules from the standard G2‐1 test set. For the first time FLO‐SIC results for the GGA‐type PBE functional are presented. In addition, examples where FLO‐SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO‐SIC DFT method are compared to other SIC variants and experimental values. The self‐interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE‐GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc. The accuracy of the FLO‐SIC methodology is analyzed in detail for the G2‐1 benchmark set for LDA‐ and, for the first time, PBE‐FLO‐SIC. Cases where a proper self‐interaction correction delivers more accurate results than standard DFT functionals are discussed: the dissociation limit for H2+, the step‐wise linearity behavior for fractional occupation as well as the significant reduction of the error of static polarizabilities. The thermochemical performance is analyzed for the G2‐1 benchmark suite.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30306597</pmid><doi>10.1002/jcc.25586</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4561-0158</orcidid><orcidid>https://orcid.org/0000-0002-8989-7402</orcidid><orcidid>https://orcid.org/0000-0003-2214-2467</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2018-11, Vol.39 (29), p.2463-2471
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2118313107
source Wiley Online Library Journals Frontfile Complete
subjects Density functional theory
energies of formation
Enthalpy
Ionization
Ionization potentials
Linearity
molecules
self‐interaction correction
title Fermi‐Löwdin orbital self‐interaction corrected density functional theory: Ionization potentials and enthalpies of formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%E2%80%90L%C3%B6wdin%20orbital%20self%E2%80%90interaction%20corrected%20density%20functional%20theory:%20Ionization%20potentials%20and%20enthalpies%20of%20formation&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Schwalbe,%20Sebastian&rft.date=2018-11-05&rft.volume=39&rft.issue=29&rft.spage=2463&rft.epage=2471&rft.pages=2463-2471&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25586&rft_dat=%3Cproquest_cross%3E2133087491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133087491&rft_id=info:pmid/30306597&rfr_iscdi=true