miRNAs as biofluid markers for diagnostics of Alzheimer's disease: recent status and perspectives

After many decades of research in the field of neurodegeneration, we have no effective cure for Alzheimer's disease (AD), a major form of dementia. It is mainly due to the lack of early, reliable and sensitive biomarkers and incomplete understanding of disease mechanisms at molecular level. Sev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:General physiology and biophysics 2018-09, Vol.37 (5), p.495-514
Hauptverfasser: Kosikova, Nina, Cente, Martin, Cigankova, Viera, Koson, Peter, Filipcik, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After many decades of research in the field of neurodegeneration, we have no effective cure for Alzheimer's disease (AD), a major form of dementia. It is mainly due to the lack of early, reliable and sensitive biomarkers and incomplete understanding of disease mechanisms at molecular level. Several recently employed biomarkers, especially their combinations, can discriminate advanced stages of AD from other forms of dementia or neuropathy. They do not provide much information on molecular mechanisms of disease rather they reflect the amount of key histopathological markers in the diseased brain. This review is focussed on novel class of potentially very promising AD biomarkers: extracellular miRNAs in body liquids, such as cerebrospinal fluid and blood. They have a great potential not only to indicate the presence of AD, but more importantly, to reflect the molecular mechanisms playing a role early at the beginning of the pathogenic pathways consequently leading to AD. We believe this comprehensive review on deregulated miRNAs in AD can be a good source of information for thorough in silico analyses aiming to identification, development and validation of miRNAs as "diseases mechanism engaged" candidate biomarkers. Having such molecules could bring us closer to the goal - successful treatment of AD.
ISSN:0231-5882
1338-4325
1338-4325
DOI:10.4149/gpb_2018019