Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis
Cancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-11, Vol.10 (41), p.19338-19350 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19350 |
---|---|
container_issue | 41 |
container_start_page | 19338 |
container_title | Nanoscale |
container_volume | 10 |
creator | Kang, Seong Jae Jeong, Hwa Yeon Kim, Min Woo Jeong, In Ho Choi, Moon Jung You, Young Myoung Im, Chan Su Song, In Ho Lee, Tae Sup Park, Yong Serk |
description | Cancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles in humans, as well as extravasation and active targeting, lipid micellar nanoparticles were co-loaded with paclitaxel (PTX) and quantum dots (QDs) to generate a theranostic delivery vehicle. To provide with a tumor-targeting capability, either an antibody or an aptamer against the epidermal growth factor receptor (EGFR) was conjugated to the micelle surface. The QD-containing micelles (QDMs), antibody-coupled QDMs (immuno-QDMs), and aptamer-coupled QDMs (aptamo-QDMs) were able to effectively circulate in blood for at least 8 h when administered intravenously into mice bearing EGFR-positive LS174T tumor xenografts. In vivo fluorescence imaging and a bio-distribution study showed that both the immuno-QDMs and aptamo-QDMs were largely localized in the tumor tissue. The tumor targeting capability enhanced the therapeutic efficacy of PTX for the target cancer cells. Both the immuno-PTX-QDMs and the aptamo-PTX-QDMs caused a stronger inhibition of LS174T tumor growth in mice, compared to the non-targeted PTX-QDMs. These results suggest that the anti-EGFR immuno-PTX-QDMs and anti-EGFR aptamo-PTX-QDMs could be utilized as a tumor-targeted theranostic delivery system for cancer treatment in the clinic. |
doi_str_mv | 10.1039/c8nr05099f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2118308624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124792626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7b4098cf67b6d99bc93ce7f00f538594c8292455df69aa8f7bf06674e4e7da233</originalsourceid><addsrcrecordid>eNpdkUtLJTEQRoMovmY2_gAJuBkGWquTdB5LuXivgiiIrpt0OtFId9I3SYPz76fH12JWVVCHQ1V9CJ3UcF4DVRdGhgQNKOV20CEBBhWlgux-95wdoKOcXwG4opzuowMKFASAPETby1B8dbVZP-DBT77Hozd2GHTCQYc46VS8GWzGJlY2GD3ledDFh2e8nXUo84j7WDLWoceTNoMv-s0O2MWEl1lMVdHp2Rbb4_Ji0yLMPv9Ae04P2f78rMfoaX31uLqubu83N6vL28rQhpdKdAyUNI6LjvdKdUZRY4UDcA2VjWJGEkVY0_SOK62lE50DzgWzzIpeE0qP0a8P75Tidra5tKPP77cFG-fckrqWFCQnbEHP_kNf45zCst1CESYU4YQv1O8PyqSYc7KunZIfdfrT1tD-C6JdybuH9yDWC3z6qZy70fbf6Nfn6V-orIQ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124792626</pqid></control><display><type>article</type><title>Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kang, Seong Jae ; Jeong, Hwa Yeon ; Kim, Min Woo ; Jeong, In Ho ; Choi, Moon Jung ; You, Young Myoung ; Im, Chan Su ; Song, In Ho ; Lee, Tae Sup ; Park, Yong Serk</creator><creatorcontrib>Kang, Seong Jae ; Jeong, Hwa Yeon ; Kim, Min Woo ; Jeong, In Ho ; Choi, Moon Jung ; You, Young Myoung ; Im, Chan Su ; Song, In Ho ; Lee, Tae Sup ; Park, Yong Serk</creatorcontrib><description>Cancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles in humans, as well as extravasation and active targeting, lipid micellar nanoparticles were co-loaded with paclitaxel (PTX) and quantum dots (QDs) to generate a theranostic delivery vehicle. To provide with a tumor-targeting capability, either an antibody or an aptamer against the epidermal growth factor receptor (EGFR) was conjugated to the micelle surface. The QD-containing micelles (QDMs), antibody-coupled QDMs (immuno-QDMs), and aptamer-coupled QDMs (aptamo-QDMs) were able to effectively circulate in blood for at least 8 h when administered intravenously into mice bearing EGFR-positive LS174T tumor xenografts. In vivo fluorescence imaging and a bio-distribution study showed that both the immuno-QDMs and aptamo-QDMs were largely localized in the tumor tissue. The tumor targeting capability enhanced the therapeutic efficacy of PTX for the target cancer cells. Both the immuno-PTX-QDMs and the aptamo-PTX-QDMs caused a stronger inhibition of LS174T tumor growth in mice, compared to the non-targeted PTX-QDMs. These results suggest that the anti-EGFR immuno-PTX-QDMs and anti-EGFR aptamo-PTX-QDMs could be utilized as a tumor-targeted theranostic delivery system for cancer treatment in the clinic.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr05099f</identifier><identifier>PMID: 30307008</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Antibodies, Immobilized - chemistry ; Antibodies, Immobilized - immunology ; Antineoplastic Agents, Phytogenic - administration & dosage ; Antineoplastic Agents, Phytogenic - chemistry ; Apoptosis ; Aptamers, Nucleotide - chemistry ; Blood circulation ; Cancer ; Cancer therapies ; Cell cycle ; Cell Line, Tumor ; Cobalt ; Drug Carriers - chemistry ; Drug Carriers - metabolism ; Drug Liberation ; Drug Stability ; Electrophoresis ; ErbB Receptors - chemistry ; ErbB Receptors - immunology ; Fluorescence ; Growth factors ; Humans ; In vivo methods and tests ; Lipids ; Mice ; Micelles ; Nanoparticles ; Nanoparticles - chemistry ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; Neoplasms - pathology ; Optical Imaging ; Paclitaxel - administration & dosage ; Paclitaxel - chemistry ; Quantum dots ; Quantum Dots - chemistry ; Theranostic Nanomedicine ; Tissue Distribution ; Transplantation, Heterologous ; Tumors ; Xenotransplantation</subject><ispartof>Nanoscale, 2018-11, Vol.10 (41), p.19338-19350</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7b4098cf67b6d99bc93ce7f00f538594c8292455df69aa8f7bf06674e4e7da233</citedby><cites>FETCH-LOGICAL-c356t-7b4098cf67b6d99bc93ce7f00f538594c8292455df69aa8f7bf06674e4e7da233</cites><orcidid>0000-0003-0982-3604 ; 0000-0002-5886-099X ; 0000-0002-8266-7380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30307008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Seong Jae</creatorcontrib><creatorcontrib>Jeong, Hwa Yeon</creatorcontrib><creatorcontrib>Kim, Min Woo</creatorcontrib><creatorcontrib>Jeong, In Ho</creatorcontrib><creatorcontrib>Choi, Moon Jung</creatorcontrib><creatorcontrib>You, Young Myoung</creatorcontrib><creatorcontrib>Im, Chan Su</creatorcontrib><creatorcontrib>Song, In Ho</creatorcontrib><creatorcontrib>Lee, Tae Sup</creatorcontrib><creatorcontrib>Park, Yong Serk</creatorcontrib><title>Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Cancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles in humans, as well as extravasation and active targeting, lipid micellar nanoparticles were co-loaded with paclitaxel (PTX) and quantum dots (QDs) to generate a theranostic delivery vehicle. To provide with a tumor-targeting capability, either an antibody or an aptamer against the epidermal growth factor receptor (EGFR) was conjugated to the micelle surface. The QD-containing micelles (QDMs), antibody-coupled QDMs (immuno-QDMs), and aptamer-coupled QDMs (aptamo-QDMs) were able to effectively circulate in blood for at least 8 h when administered intravenously into mice bearing EGFR-positive LS174T tumor xenografts. In vivo fluorescence imaging and a bio-distribution study showed that both the immuno-QDMs and aptamo-QDMs were largely localized in the tumor tissue. The tumor targeting capability enhanced the therapeutic efficacy of PTX for the target cancer cells. Both the immuno-PTX-QDMs and the aptamo-PTX-QDMs caused a stronger inhibition of LS174T tumor growth in mice, compared to the non-targeted PTX-QDMs. These results suggest that the anti-EGFR immuno-PTX-QDMs and anti-EGFR aptamo-PTX-QDMs could be utilized as a tumor-targeted theranostic delivery system for cancer treatment in the clinic.</description><subject>Animals</subject><subject>Antibodies, Immobilized - chemistry</subject><subject>Antibodies, Immobilized - immunology</subject><subject>Antineoplastic Agents, Phytogenic - administration & dosage</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Apoptosis</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Blood circulation</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cobalt</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - metabolism</subject><subject>Drug Liberation</subject><subject>Drug Stability</subject><subject>Electrophoresis</subject><subject>ErbB Receptors - chemistry</subject><subject>ErbB Receptors - immunology</subject><subject>Fluorescence</subject><subject>Growth factors</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Lipids</subject><subject>Mice</subject><subject>Micelles</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Optical Imaging</subject><subject>Paclitaxel - administration & dosage</subject><subject>Paclitaxel - chemistry</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Theranostic Nanomedicine</subject><subject>Tissue Distribution</subject><subject>Transplantation, Heterologous</subject><subject>Tumors</subject><subject>Xenotransplantation</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLJTEQRoMovmY2_gAJuBkGWquTdB5LuXivgiiIrpt0OtFId9I3SYPz76fH12JWVVCHQ1V9CJ3UcF4DVRdGhgQNKOV20CEBBhWlgux-95wdoKOcXwG4opzuowMKFASAPETby1B8dbVZP-DBT77Hozd2GHTCQYc46VS8GWzGJlY2GD3ledDFh2e8nXUo84j7WDLWoceTNoMv-s0O2MWEl1lMVdHp2Rbb4_Ji0yLMPv9Ae04P2f78rMfoaX31uLqubu83N6vL28rQhpdKdAyUNI6LjvdKdUZRY4UDcA2VjWJGEkVY0_SOK62lE50DzgWzzIpeE0qP0a8P75Tidra5tKPP77cFG-fckrqWFCQnbEHP_kNf45zCst1CESYU4YQv1O8PyqSYc7KunZIfdfrT1tD-C6JdybuH9yDWC3z6qZy70fbf6Nfn6V-orIQ5</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Kang, Seong Jae</creator><creator>Jeong, Hwa Yeon</creator><creator>Kim, Min Woo</creator><creator>Jeong, In Ho</creator><creator>Choi, Moon Jung</creator><creator>You, Young Myoung</creator><creator>Im, Chan Su</creator><creator>Song, In Ho</creator><creator>Lee, Tae Sup</creator><creator>Park, Yong Serk</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0982-3604</orcidid><orcidid>https://orcid.org/0000-0002-5886-099X</orcidid><orcidid>https://orcid.org/0000-0002-8266-7380</orcidid></search><sort><creationdate>20181107</creationdate><title>Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis</title><author>Kang, Seong Jae ; Jeong, Hwa Yeon ; Kim, Min Woo ; Jeong, In Ho ; Choi, Moon Jung ; You, Young Myoung ; Im, Chan Su ; Song, In Ho ; Lee, Tae Sup ; Park, Yong Serk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7b4098cf67b6d99bc93ce7f00f538594c8292455df69aa8f7bf06674e4e7da233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies, Immobilized - chemistry</topic><topic>Antibodies, Immobilized - immunology</topic><topic>Antineoplastic Agents, Phytogenic - administration & dosage</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Apoptosis</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Blood circulation</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cobalt</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - metabolism</topic><topic>Drug Liberation</topic><topic>Drug Stability</topic><topic>Electrophoresis</topic><topic>ErbB Receptors - chemistry</topic><topic>ErbB Receptors - immunology</topic><topic>Fluorescence</topic><topic>Growth factors</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Lipids</topic><topic>Mice</topic><topic>Micelles</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Optical Imaging</topic><topic>Paclitaxel - administration & dosage</topic><topic>Paclitaxel - chemistry</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Theranostic Nanomedicine</topic><topic>Tissue Distribution</topic><topic>Transplantation, Heterologous</topic><topic>Tumors</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Seong Jae</creatorcontrib><creatorcontrib>Jeong, Hwa Yeon</creatorcontrib><creatorcontrib>Kim, Min Woo</creatorcontrib><creatorcontrib>Jeong, In Ho</creatorcontrib><creatorcontrib>Choi, Moon Jung</creatorcontrib><creatorcontrib>You, Young Myoung</creatorcontrib><creatorcontrib>Im, Chan Su</creatorcontrib><creatorcontrib>Song, In Ho</creatorcontrib><creatorcontrib>Lee, Tae Sup</creatorcontrib><creatorcontrib>Park, Yong Serk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Seong Jae</au><au>Jeong, Hwa Yeon</au><au>Kim, Min Woo</au><au>Jeong, In Ho</au><au>Choi, Moon Jung</au><au>You, Young Myoung</au><au>Im, Chan Su</au><au>Song, In Ho</au><au>Lee, Tae Sup</au><au>Park, Yong Serk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>10</volume><issue>41</issue><spage>19338</spage><epage>19350</epage><pages>19338-19350</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Cancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles in humans, as well as extravasation and active targeting, lipid micellar nanoparticles were co-loaded with paclitaxel (PTX) and quantum dots (QDs) to generate a theranostic delivery vehicle. To provide with a tumor-targeting capability, either an antibody or an aptamer against the epidermal growth factor receptor (EGFR) was conjugated to the micelle surface. The QD-containing micelles (QDMs), antibody-coupled QDMs (immuno-QDMs), and aptamer-coupled QDMs (aptamo-QDMs) were able to effectively circulate in blood for at least 8 h when administered intravenously into mice bearing EGFR-positive LS174T tumor xenografts. In vivo fluorescence imaging and a bio-distribution study showed that both the immuno-QDMs and aptamo-QDMs were largely localized in the tumor tissue. The tumor targeting capability enhanced the therapeutic efficacy of PTX for the target cancer cells. Both the immuno-PTX-QDMs and the aptamo-PTX-QDMs caused a stronger inhibition of LS174T tumor growth in mice, compared to the non-targeted PTX-QDMs. These results suggest that the anti-EGFR immuno-PTX-QDMs and anti-EGFR aptamo-PTX-QDMs could be utilized as a tumor-targeted theranostic delivery system for cancer treatment in the clinic.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30307008</pmid><doi>10.1039/c8nr05099f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0982-3604</orcidid><orcidid>https://orcid.org/0000-0002-5886-099X</orcidid><orcidid>https://orcid.org/0000-0002-8266-7380</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-11, Vol.10 (41), p.19338-19350 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2118308624 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Animals Antibodies, Immobilized - chemistry Antibodies, Immobilized - immunology Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - chemistry Apoptosis Aptamers, Nucleotide - chemistry Blood circulation Cancer Cancer therapies Cell cycle Cell Line, Tumor Cobalt Drug Carriers - chemistry Drug Carriers - metabolism Drug Liberation Drug Stability Electrophoresis ErbB Receptors - chemistry ErbB Receptors - immunology Fluorescence Growth factors Humans In vivo methods and tests Lipids Mice Micelles Nanoparticles Nanoparticles - chemistry Neoplasms - diagnostic imaging Neoplasms - drug therapy Neoplasms - pathology Optical Imaging Paclitaxel - administration & dosage Paclitaxel - chemistry Quantum dots Quantum Dots - chemistry Theranostic Nanomedicine Tissue Distribution Transplantation, Heterologous Tumors Xenotransplantation |
title | Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-EGFR%20lipid%20micellar%20nanoparticles%20co-encapsulating%20quantum%20dots%20and%20paclitaxel%20for%20tumor-targeted%20theranosis&rft.jtitle=Nanoscale&rft.au=Kang,%20Seong%20Jae&rft.date=2018-11-07&rft.volume=10&rft.issue=41&rft.spage=19338&rft.epage=19350&rft.pages=19338-19350&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr05099f&rft_dat=%3Cproquest_cross%3E2124792626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124792626&rft_id=info:pmid/30307008&rfr_iscdi=true |