Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa
As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucos...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2009-08, Vol.9 (8), p.929-935 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 8 |
container_start_page | 929 |
container_title | IEEE sensors journal |
container_volume | 9 |
creator | Gardner, J.W. Taylor, J.E. |
description | As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals. |
doi_str_mv | 10.1109/JSEN.2009.2024856 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_21182749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5153584</ieee_id><sourcerecordid>1349434411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</originalsourceid><addsrcrecordid>eNqF0U1LHjEQB_BFWtCqH6D0svQgXlYnmbwe9cFXrAoq7S3kyWZtZN1osiv47c3ySA896CWTw2-GYf5V9Z3AHiGg989vji73KIAuD2WKi7Vqg3CuGiKZ-jL_ERqG8s969S3nBwCiJZcb1e_L-OL7ehGHl9hPY4hDc2izb-ubcD_Yvr5O0fmcw3Bf33r3dwjPk891F1Nth_ogjaELLhR31XfWjTG91r8mF7Pdqr52ts9--71uVnfHR7eL0-bi6uRscXDROCZwbDQKoTT6znokzDLQqvVgYdlpqqzkSxBcOslFC1SAailDBZ2Wbulti1LiZrWzmvuU4rzaaB5Ddr7v7eDjlA0KRBSUfwopIYpKpgvc_RCWgzJJpaTwOUWmGTJGSKE__6MPcUrlwtkoQUChlrQgskIuxZyT78xTCo82vRoCZo7ZzDGbOWbzHnPp-bHqCd77f56XvLli-Aa4O6Gy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861083972</pqid></control><display><type>article</type><title>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</title><source>IEEE Electronic Library (IEL)</source><creator>Gardner, J.W. ; Taylor, J.E.</creator><creatorcontrib>Gardner, J.W. ; Taylor, J.E.</creatorcontrib><description>As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2009.2024856</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical signal processing ; Biomimetics ; Biosensors ; Classification ; Convolution ; Design engineering ; electronic nose ; Electronic noses ; Human ; Humans ; Olfactory ; Robustness ; Sensor arrays ; Sensor systems ; Sensors ; Signal processing</subject><ispartof>IEEE sensors journal, 2009-08, Vol.9 (8), p.929-935</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</citedby><cites>FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5153584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5153584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gardner, J.W.</creatorcontrib><creatorcontrib>Taylor, J.E.</creatorcontrib><title>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.</description><subject>Biomedical signal processing</subject><subject>Biomimetics</subject><subject>Biosensors</subject><subject>Classification</subject><subject>Convolution</subject><subject>Design engineering</subject><subject>electronic nose</subject><subject>Electronic noses</subject><subject>Human</subject><subject>Humans</subject><subject>Olfactory</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal processing</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LHjEQB_BFWtCqH6D0svQgXlYnmbwe9cFXrAoq7S3kyWZtZN1osiv47c3ySA896CWTw2-GYf5V9Z3AHiGg989vji73KIAuD2WKi7Vqg3CuGiKZ-jL_ERqG8s969S3nBwCiJZcb1e_L-OL7ehGHl9hPY4hDc2izb-ubcD_Yvr5O0fmcw3Bf33r3dwjPk891F1Nth_ogjaELLhR31XfWjTG91r8mF7Pdqr52ts9--71uVnfHR7eL0-bi6uRscXDROCZwbDQKoTT6znokzDLQqvVgYdlpqqzkSxBcOslFC1SAailDBZ2Wbulti1LiZrWzmvuU4rzaaB5Ddr7v7eDjlA0KRBSUfwopIYpKpgvc_RCWgzJJpaTwOUWmGTJGSKE__6MPcUrlwtkoQUChlrQgskIuxZyT78xTCo82vRoCZo7ZzDGbOWbzHnPp-bHqCd77f56XvLli-Aa4O6Gy</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Gardner, J.W.</creator><creator>Taylor, J.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QR</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>7TK</scope></search><sort><creationdate>200908</creationdate><title>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</title><author>Gardner, J.W. ; Taylor, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomedical signal processing</topic><topic>Biomimetics</topic><topic>Biosensors</topic><topic>Classification</topic><topic>Convolution</topic><topic>Design engineering</topic><topic>electronic nose</topic><topic>Electronic noses</topic><topic>Human</topic><topic>Humans</topic><topic>Olfactory</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, J.W.</creatorcontrib><creatorcontrib>Taylor, J.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Chemoreception Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gardner, J.W.</au><au>Taylor, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2009-08</date><risdate>2009</risdate><volume>9</volume><issue>8</issue><spage>929</spage><epage>935</epage><pages>929-935</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2009.2024856</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2009-08, Vol.9 (8), p.929-935 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_miscellaneous_21182749 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical signal processing Biomimetics Biosensors Classification Convolution Design engineering electronic nose Electronic noses Human Humans Olfactory Robustness Sensor arrays Sensor systems Sensors Signal processing |
title | Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Convolution-Based%20Signal%20Processing%20Techniques%20for%20an%20Artificial%20Olfactory%20Mucosa&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gardner,%20J.W.&rft.date=2009-08&rft.volume=9&rft.issue=8&rft.spage=929&rft.epage=935&rft.pages=929-935&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2009.2024856&rft_dat=%3Cproquest_RIE%3E1349434411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861083972&rft_id=info:pmid/&rft_ieee_id=5153584&rfr_iscdi=true |