Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa

As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2009-08, Vol.9 (8), p.929-935
Hauptverfasser: Gardner, J.W., Taylor, J.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 8
container_start_page 929
container_title IEEE sensors journal
container_volume 9
creator Gardner, J.W.
Taylor, J.E.
description As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.
doi_str_mv 10.1109/JSEN.2009.2024856
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_21182749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5153584</ieee_id><sourcerecordid>1349434411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</originalsourceid><addsrcrecordid>eNqF0U1LHjEQB_BFWtCqH6D0svQgXlYnmbwe9cFXrAoq7S3kyWZtZN1osiv47c3ySA896CWTw2-GYf5V9Z3AHiGg989vji73KIAuD2WKi7Vqg3CuGiKZ-jL_ERqG8s969S3nBwCiJZcb1e_L-OL7ehGHl9hPY4hDc2izb-ubcD_Yvr5O0fmcw3Bf33r3dwjPk891F1Nth_ogjaELLhR31XfWjTG91r8mF7Pdqr52ts9--71uVnfHR7eL0-bi6uRscXDROCZwbDQKoTT6znokzDLQqvVgYdlpqqzkSxBcOslFC1SAailDBZ2Wbulti1LiZrWzmvuU4rzaaB5Ddr7v7eDjlA0KRBSUfwopIYpKpgvc_RCWgzJJpaTwOUWmGTJGSKE__6MPcUrlwtkoQUChlrQgskIuxZyT78xTCo82vRoCZo7ZzDGbOWbzHnPp-bHqCd77f56XvLli-Aa4O6Gy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861083972</pqid></control><display><type>article</type><title>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</title><source>IEEE Electronic Library (IEL)</source><creator>Gardner, J.W. ; Taylor, J.E.</creator><creatorcontrib>Gardner, J.W. ; Taylor, J.E.</creatorcontrib><description>As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2009.2024856</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical signal processing ; Biomimetics ; Biosensors ; Classification ; Convolution ; Design engineering ; electronic nose ; Electronic noses ; Human ; Humans ; Olfactory ; Robustness ; Sensor arrays ; Sensor systems ; Sensors ; Signal processing</subject><ispartof>IEEE sensors journal, 2009-08, Vol.9 (8), p.929-935</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</citedby><cites>FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5153584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5153584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gardner, J.W.</creatorcontrib><creatorcontrib>Taylor, J.E.</creatorcontrib><title>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.</description><subject>Biomedical signal processing</subject><subject>Biomimetics</subject><subject>Biosensors</subject><subject>Classification</subject><subject>Convolution</subject><subject>Design engineering</subject><subject>electronic nose</subject><subject>Electronic noses</subject><subject>Human</subject><subject>Humans</subject><subject>Olfactory</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal processing</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LHjEQB_BFWtCqH6D0svQgXlYnmbwe9cFXrAoq7S3kyWZtZN1osiv47c3ySA896CWTw2-GYf5V9Z3AHiGg989vji73KIAuD2WKi7Vqg3CuGiKZ-jL_ERqG8s969S3nBwCiJZcb1e_L-OL7ehGHl9hPY4hDc2izb-ubcD_Yvr5O0fmcw3Bf33r3dwjPk891F1Nth_ogjaELLhR31XfWjTG91r8mF7Pdqr52ts9--71uVnfHR7eL0-bi6uRscXDROCZwbDQKoTT6znokzDLQqvVgYdlpqqzkSxBcOslFC1SAailDBZ2Wbulti1LiZrWzmvuU4rzaaB5Ddr7v7eDjlA0KRBSUfwopIYpKpgvc_RCWgzJJpaTwOUWmGTJGSKE__6MPcUrlwtkoQUChlrQgskIuxZyT78xTCo82vRoCZo7ZzDGbOWbzHnPp-bHqCd77f56XvLli-Aa4O6Gy</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Gardner, J.W.</creator><creator>Taylor, J.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QR</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>7TK</scope></search><sort><creationdate>200908</creationdate><title>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</title><author>Gardner, J.W. ; Taylor, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-9366893efae314a4098de0a0bf928a75b0657c756d02608d24380f97cbead3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomedical signal processing</topic><topic>Biomimetics</topic><topic>Biosensors</topic><topic>Classification</topic><topic>Convolution</topic><topic>Design engineering</topic><topic>electronic nose</topic><topic>Electronic noses</topic><topic>Human</topic><topic>Humans</topic><topic>Olfactory</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, J.W.</creatorcontrib><creatorcontrib>Taylor, J.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Chemoreception Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gardner, J.W.</au><au>Taylor, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2009-08</date><risdate>2009</risdate><volume>9</volume><issue>8</issue><spage>929</spage><epage>935</epage><pages>929-935</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2009.2024856</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2009-08, Vol.9 (8), p.929-935
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_miscellaneous_21182749
source IEEE Electronic Library (IEL)
subjects Biomedical signal processing
Biomimetics
Biosensors
Classification
Convolution
Design engineering
electronic nose
Electronic noses
Human
Humans
Olfactory
Robustness
Sensor arrays
Sensor systems
Sensors
Signal processing
title Novel Convolution-Based Signal Processing Techniques for an Artificial Olfactory Mucosa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Convolution-Based%20Signal%20Processing%20Techniques%20for%20an%20Artificial%20Olfactory%20Mucosa&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gardner,%20J.W.&rft.date=2009-08&rft.volume=9&rft.issue=8&rft.spage=929&rft.epage=935&rft.pages=929-935&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2009.2024856&rft_dat=%3Cproquest_RIE%3E1349434411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861083972&rft_id=info:pmid/&rft_ieee_id=5153584&rfr_iscdi=true