Quantifying the influence of the ion cloud on SAXS profiles of charged proteins
Small-angle X-ray scattering (SAXS) is a popular experimental technique used to obtain structural information on biomolecules in solution. SAXS is sensitive to the overall electron density contrast between the biomolecule and the buffer, including contrast contributions from the hydration layer and...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018-11, Vol.20 (41), p.26351-26361 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26361 |
---|---|
container_issue | 41 |
container_start_page | 26351 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 20 |
creator | Ivanović, Miloš T Bruetzel, Linda K Shevchuk, Roman Lipfert, Jan Hub, Jochen S |
description | Small-angle X-ray scattering (SAXS) is a popular experimental technique used to obtain structural information on biomolecules in solution. SAXS is sensitive to the overall electron density contrast between the biomolecule and the buffer, including contrast contributions from the hydration layer and the ion cloud. This property may be used advantageously to probe the properties of the ion cloud around charged biomolecules. However, in turn, contributions from the hydration layer and ion cloud may complicate the interpretation of the data, because these contributions must be modelled during structure validation and refinement. In this work, we quantified the influence of the ion cloud on SAXS curves of two charged proteins, bovine serum albumin (BSA) and glucose isomerase (GI), solvated in five different alkali chloride buffers of 100 mM or 500 mM concentrations. We compared three computational methods of varying physical detail, for deriving the ion cloud effect on the radius of gyration R
of the proteins, namely (i) atomistic molecular dynamics simulations in conjunction with explicit-solvent SAXS calculations, (ii) non-linear Poisson-Boltzmann calculations, and (iii) a simple spherical model in conjunction with linearized Poisson-Boltzmann theory. The calculations for BSA are validated against experimental data. We find favorable agreement among the three computational methods and the experiment, suggesting that the influence of the ion cloud on R
, as detected by SAXS, may be predicted with nearly analytic calculations. Our analysis further suggests that the ion cloud effect on R
is dominated by the long-range distribution of the ions around the proteins, as described by Debye-Hückel theory, whereas the local salt structure near the protein surface plays a minor role. |
doi_str_mv | 10.1039/c8cp03080d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117821138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117821138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3b288305a44458f2b92f8e32eb5d6c1dcc17483130d89784a2e3666d0e27a9e43</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgipvTi3-AFLyIUM2vtslx1J8wmDIFbyVNXraOLp1Ne9h_b-bmDl5eHo8P74UvQpcE3xHM5L0Weo0ZFtgcoSHhKYslFvz40GfpAJ15v8QYk4SwUzRggTMi5RBN33vluspuKjePugVElbN1D05D1NjdoHGRrpveRKGZjb9m0bptbFWD3wq9UO0czHbWQeX8OTqxqvZwsX9H6PPp8SN_iSfT59d8PIk1S2gXs5IKwXCiOOeJsLSU1ApgFMrEpJoYrUnGBSMMGyEzwRUFlqapwUAzJYGzEbrZ7Q2Hv3vwXbGqvIa6Vg6a3heUkEyEwkSg1__osulbF34XFA0RJZmUQd3ulG4b71uwxbqtVqrdFAQX25iLXORvvzE_BHy1X9mXKzAH-pcr-wE0-nWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124635799</pqid></control><display><type>article</type><title>Quantifying the influence of the ion cloud on SAXS profiles of charged proteins</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ivanović, Miloš T ; Bruetzel, Linda K ; Shevchuk, Roman ; Lipfert, Jan ; Hub, Jochen S</creator><creatorcontrib>Ivanović, Miloš T ; Bruetzel, Linda K ; Shevchuk, Roman ; Lipfert, Jan ; Hub, Jochen S</creatorcontrib><description>Small-angle X-ray scattering (SAXS) is a popular experimental technique used to obtain structural information on biomolecules in solution. SAXS is sensitive to the overall electron density contrast between the biomolecule and the buffer, including contrast contributions from the hydration layer and the ion cloud. This property may be used advantageously to probe the properties of the ion cloud around charged biomolecules. However, in turn, contributions from the hydration layer and ion cloud may complicate the interpretation of the data, because these contributions must be modelled during structure validation and refinement. In this work, we quantified the influence of the ion cloud on SAXS curves of two charged proteins, bovine serum albumin (BSA) and glucose isomerase (GI), solvated in five different alkali chloride buffers of 100 mM or 500 mM concentrations. We compared three computational methods of varying physical detail, for deriving the ion cloud effect on the radius of gyration R
of the proteins, namely (i) atomistic molecular dynamics simulations in conjunction with explicit-solvent SAXS calculations, (ii) non-linear Poisson-Boltzmann calculations, and (iii) a simple spherical model in conjunction with linearized Poisson-Boltzmann theory. The calculations for BSA are validated against experimental data. We find favorable agreement among the three computational methods and the experiment, suggesting that the influence of the ion cloud on R
, as detected by SAXS, may be predicted with nearly analytic calculations. Our analysis further suggests that the ion cloud effect on R
is dominated by the long-range distribution of the ions around the proteins, as described by Debye-Hückel theory, whereas the local salt structure near the protein surface plays a minor role.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp03080d</identifier><identifier>PMID: 30303199</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomolecules ; Buffers ; Cloud computing ; Computer simulation ; Electron density ; Hydration ; Linearization ; Mathematical models ; Molecular dynamics ; Proteins ; Serum albumin ; Small angle X ray scattering</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (41), p.26351-26361</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3b288305a44458f2b92f8e32eb5d6c1dcc17483130d89784a2e3666d0e27a9e43</citedby><cites>FETCH-LOGICAL-c352t-3b288305a44458f2b92f8e32eb5d6c1dcc17483130d89784a2e3666d0e27a9e43</cites><orcidid>0000-0003-3613-7896 ; 0000-0003-3164-9411 ; 0000-0001-7716-1767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30303199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanović, Miloš T</creatorcontrib><creatorcontrib>Bruetzel, Linda K</creatorcontrib><creatorcontrib>Shevchuk, Roman</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Hub, Jochen S</creatorcontrib><title>Quantifying the influence of the ion cloud on SAXS profiles of charged proteins</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Small-angle X-ray scattering (SAXS) is a popular experimental technique used to obtain structural information on biomolecules in solution. SAXS is sensitive to the overall electron density contrast between the biomolecule and the buffer, including contrast contributions from the hydration layer and the ion cloud. This property may be used advantageously to probe the properties of the ion cloud around charged biomolecules. However, in turn, contributions from the hydration layer and ion cloud may complicate the interpretation of the data, because these contributions must be modelled during structure validation and refinement. In this work, we quantified the influence of the ion cloud on SAXS curves of two charged proteins, bovine serum albumin (BSA) and glucose isomerase (GI), solvated in five different alkali chloride buffers of 100 mM or 500 mM concentrations. We compared three computational methods of varying physical detail, for deriving the ion cloud effect on the radius of gyration R
of the proteins, namely (i) atomistic molecular dynamics simulations in conjunction with explicit-solvent SAXS calculations, (ii) non-linear Poisson-Boltzmann calculations, and (iii) a simple spherical model in conjunction with linearized Poisson-Boltzmann theory. The calculations for BSA are validated against experimental data. We find favorable agreement among the three computational methods and the experiment, suggesting that the influence of the ion cloud on R
, as detected by SAXS, may be predicted with nearly analytic calculations. Our analysis further suggests that the ion cloud effect on R
is dominated by the long-range distribution of the ions around the proteins, as described by Debye-Hückel theory, whereas the local salt structure near the protein surface plays a minor role.</description><subject>Biomolecules</subject><subject>Buffers</subject><subject>Cloud computing</subject><subject>Computer simulation</subject><subject>Electron density</subject><subject>Hydration</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Proteins</subject><subject>Serum albumin</subject><subject>Small angle X ray scattering</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgipvTi3-AFLyIUM2vtslx1J8wmDIFbyVNXraOLp1Ne9h_b-bmDl5eHo8P74UvQpcE3xHM5L0Weo0ZFtgcoSHhKYslFvz40GfpAJ15v8QYk4SwUzRggTMi5RBN33vluspuKjePugVElbN1D05D1NjdoHGRrpveRKGZjb9m0bptbFWD3wq9UO0czHbWQeX8OTqxqvZwsX9H6PPp8SN_iSfT59d8PIk1S2gXs5IKwXCiOOeJsLSU1ApgFMrEpJoYrUnGBSMMGyEzwRUFlqapwUAzJYGzEbrZ7Q2Hv3vwXbGqvIa6Vg6a3heUkEyEwkSg1__osulbF34XFA0RJZmUQd3ulG4b71uwxbqtVqrdFAQX25iLXORvvzE_BHy1X9mXKzAH-pcr-wE0-nWI</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Ivanović, Miloš T</creator><creator>Bruetzel, Linda K</creator><creator>Shevchuk, Roman</creator><creator>Lipfert, Jan</creator><creator>Hub, Jochen S</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3613-7896</orcidid><orcidid>https://orcid.org/0000-0003-3164-9411</orcidid><orcidid>https://orcid.org/0000-0001-7716-1767</orcidid></search><sort><creationdate>20181107</creationdate><title>Quantifying the influence of the ion cloud on SAXS profiles of charged proteins</title><author>Ivanović, Miloš T ; Bruetzel, Linda K ; Shevchuk, Roman ; Lipfert, Jan ; Hub, Jochen S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3b288305a44458f2b92f8e32eb5d6c1dcc17483130d89784a2e3666d0e27a9e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomolecules</topic><topic>Buffers</topic><topic>Cloud computing</topic><topic>Computer simulation</topic><topic>Electron density</topic><topic>Hydration</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Proteins</topic><topic>Serum albumin</topic><topic>Small angle X ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanović, Miloš T</creatorcontrib><creatorcontrib>Bruetzel, Linda K</creatorcontrib><creatorcontrib>Shevchuk, Roman</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Hub, Jochen S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanović, Miloš T</au><au>Bruetzel, Linda K</au><au>Shevchuk, Roman</au><au>Lipfert, Jan</au><au>Hub, Jochen S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the influence of the ion cloud on SAXS profiles of charged proteins</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>20</volume><issue>41</issue><spage>26351</spage><epage>26361</epage><pages>26351-26361</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Small-angle X-ray scattering (SAXS) is a popular experimental technique used to obtain structural information on biomolecules in solution. SAXS is sensitive to the overall electron density contrast between the biomolecule and the buffer, including contrast contributions from the hydration layer and the ion cloud. This property may be used advantageously to probe the properties of the ion cloud around charged biomolecules. However, in turn, contributions from the hydration layer and ion cloud may complicate the interpretation of the data, because these contributions must be modelled during structure validation and refinement. In this work, we quantified the influence of the ion cloud on SAXS curves of two charged proteins, bovine serum albumin (BSA) and glucose isomerase (GI), solvated in five different alkali chloride buffers of 100 mM or 500 mM concentrations. We compared three computational methods of varying physical detail, for deriving the ion cloud effect on the radius of gyration R
of the proteins, namely (i) atomistic molecular dynamics simulations in conjunction with explicit-solvent SAXS calculations, (ii) non-linear Poisson-Boltzmann calculations, and (iii) a simple spherical model in conjunction with linearized Poisson-Boltzmann theory. The calculations for BSA are validated against experimental data. We find favorable agreement among the three computational methods and the experiment, suggesting that the influence of the ion cloud on R
, as detected by SAXS, may be predicted with nearly analytic calculations. Our analysis further suggests that the ion cloud effect on R
is dominated by the long-range distribution of the ions around the proteins, as described by Debye-Hückel theory, whereas the local salt structure near the protein surface plays a minor role.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30303199</pmid><doi>10.1039/c8cp03080d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3613-7896</orcidid><orcidid>https://orcid.org/0000-0003-3164-9411</orcidid><orcidid>https://orcid.org/0000-0001-7716-1767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (41), p.26351-26361 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2117821138 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biomolecules Buffers Cloud computing Computer simulation Electron density Hydration Linearization Mathematical models Molecular dynamics Proteins Serum albumin Small angle X ray scattering |
title | Quantifying the influence of the ion cloud on SAXS profiles of charged proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20influence%20of%20the%20ion%20cloud%20on%20SAXS%20profiles%20of%20charged%20proteins&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ivanovi%C4%87,%20Milo%C5%A1%20T&rft.date=2018-11-07&rft.volume=20&rft.issue=41&rft.spage=26351&rft.epage=26361&rft.pages=26351-26361&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp03080d&rft_dat=%3Cproquest_cross%3E2117821138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124635799&rft_id=info:pmid/30303199&rfr_iscdi=true |