Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing

[Display omitted] Wound healing can be a painful and time-consuming process in patients with diabetes mellitus. In light of this, the use of wound healing devices could help to accelerate this process. Here, cellulose-based films loaded with vitamin C (VitC) and/or propolis (Prop), two natural compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2018-12, Vol.552 (1-2), p.340-351
Hauptverfasser: Voss, Guilherme T., Gularte, Matheus S., Vogt, Ane G., Giongo, Janice L., Vaucher, Rodrigo A., Echenique, Joanna V.Z., Soares, Mauro P., Luchese, Cristiane, Wilhelm, Ethel A., Fajardo, André R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Wound healing can be a painful and time-consuming process in patients with diabetes mellitus. In light of this, the use of wound healing devices could help to accelerate this process. Here, cellulose-based films loaded with vitamin C (VitC) and/or propolis (Prop), two natural compounds with attractive properties were engineered. The starting materials and the cellulose-based films were characterized in detail. As assessed, vitamin C can be released from the Cel-PVA/VitC and Cel-PVA/VitC/Prop films in a controlled manner. In vitro antibacterial activity studies showed a reduction of bacteria counts (Escherichia coli and Staphylococcus aureus) after Cel-PVA/VitC, Cel-PVA/Prop, and Cel-PVA/VitC/Prop treatments. Moreover, we examined the antibacterial and wound healing properties of the cellulose-based films in a streptozotocin (STZ)-induced diabetic animal model. Diabetic mice exhibited impaired wound healing while the Cel-PVA/VitC/Prop treatment increased the wound closure. A marked reduction in bacterial counts present in the wound environment of diabetic mice was observed after Cel-PVA/VitC, Cel-PVA/Prop and Cel-PVA/VitC/Prop treatment. Histological analysis demonstrated that the non-treated diabetic mice group did not exhibit adequate wound healing while the treated group with Cel-PVA/VitC and Cel-PVA/VitC/Prop films presented good cicatricial response. Furthermore, these novel eco-friendly films may represent a new therapeutic approach to accelerate diabetic wound healing.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2018.10.009