Assessment of microvascular dysfunction in acute limb ischemia‐reperfusion injury

Background Ischemia‐reperfusion (I/R) injury involves damage to the microvessel structure (eg, increased permeability) and function (blunted vasomodulation). While microstructural damage can be detected with dynamic contrast‐enhanced (DCE) MRI, there is no diagnostic to detect deficits in microvascu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2019-04, Vol.49 (4), p.1174-1185
Hauptverfasser: Ganesh, Tameshwar, Zakher, Eric, Estrada, Marvin, Cheng, Hai‐Ling Margaret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 4
container_start_page 1174
container_title Journal of magnetic resonance imaging
container_volume 49
creator Ganesh, Tameshwar
Zakher, Eric
Estrada, Marvin
Cheng, Hai‐Ling Margaret
description Background Ischemia‐reperfusion (I/R) injury involves damage to the microvessel structure (eg, increased permeability) and function (blunted vasomodulation). While microstructural damage can be detected with dynamic contrast‐enhanced (DCE) MRI, there is no diagnostic to detect deficits in microvascular function. Purpose To apply a novel MRI method for evaluating dynamic vasomodulation to assess microvascular dysfunction in skeletal muscle following I/R injury. Study Type Prospective, longitudinal. Animal Model Twenty‐three healthy male adult Sprague–Dawley rats. Field Strength/Sequence Dynamic T1 fast field echo imaging at 3.0T with preinjection T1 mapping. Assessment Injury in the left hindlimb was induced using a 3‐hour I/R procedure. Longitudinal MRI scanning was performed up to 74 days, with animals completing assessment at different intervals for histological and laser Doppler perfusion validation. Pharmacokinetic parameters Ktrans and ve were determined following i.v. injection of gadovist (0.1 mmol/kg). Vasomodulatory response was probed on gadofosveset (0.3 mmol/kg) using hypercapnic gases delivered through a controlled gas‐mixing circuit to induce vasoconstriction and vasodilation in ventilated rats. Heart rate and blood oxygen saturation were monitored. Statistical Tests Two‐way analysis of variance with Tukey–Kramer post‐hoc analysis was used to determine significant changes in vasomodulatory response, Ktrans, and ve. Results This new MRI technique revealed impaired vasomodulation in the injured hindlimb. Vasoconstriction was maintained, but vasodilation was blunted up to 21 days postinjury (P 
doi_str_mv 10.1002/jmri.26308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117820630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190830431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-a076abf1f30c5cd2a3306781b6557847a1198d63057374dfc4d0030d5ce4f0a33</originalsourceid><addsrcrecordid>eNp90MtKAzEYBeAgiq3VjQ8gA25EGP2TTGbSZSleKhXBy3rIZBLMMJeaNEp3PoLP6JOYOtWFC1cJ5ONwchA6xHCGAch51VhzRlIKfAsNMSMkJoyn2-EOjMaYQzZAe85VADAeJ2wXDShQIJwlQ_QwcU4516h2GXU6aoy03atw0tfCRuXKad_KpenayLSRkH6poto0RWScfFaNEZ_vH1YtlNXe9ajydrWPdrSonTrYnCP0dHnxOL2O53dXs-lkHkvKMh4LyFJRaKwpSCZLIiiFNOO4SFl4TjKB8ZiX4Vsso1lSapmUEHqXTKpEQ9AjdNLnLmz34pVb5k3opepatKrzLicYZ5xASAj0-A-tOm_b0C6oMXAKCcVBnfYqjOCcVTpfWNMIu8ox5Oup8_XU-ffUAR9tIn3RqPKX_mwbAO7Bm6nV6p-o_Ob2ftaHfgEN14m9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190830431</pqid></control><display><type>article</type><title>Assessment of microvascular dysfunction in acute limb ischemia‐reperfusion injury</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ganesh, Tameshwar ; Zakher, Eric ; Estrada, Marvin ; Cheng, Hai‐Ling Margaret</creator><creatorcontrib>Ganesh, Tameshwar ; Zakher, Eric ; Estrada, Marvin ; Cheng, Hai‐Ling Margaret</creatorcontrib><description>Background Ischemia‐reperfusion (I/R) injury involves damage to the microvessel structure (eg, increased permeability) and function (blunted vasomodulation). While microstructural damage can be detected with dynamic contrast‐enhanced (DCE) MRI, there is no diagnostic to detect deficits in microvascular function. Purpose To apply a novel MRI method for evaluating dynamic vasomodulation to assess microvascular dysfunction in skeletal muscle following I/R injury. Study Type Prospective, longitudinal. Animal Model Twenty‐three healthy male adult Sprague–Dawley rats. Field Strength/Sequence Dynamic T1 fast field echo imaging at 3.0T with preinjection T1 mapping. Assessment Injury in the left hindlimb was induced using a 3‐hour I/R procedure. Longitudinal MRI scanning was performed up to 74 days, with animals completing assessment at different intervals for histological and laser Doppler perfusion validation. Pharmacokinetic parameters Ktrans and ve were determined following i.v. injection of gadovist (0.1 mmol/kg). Vasomodulatory response was probed on gadofosveset (0.3 mmol/kg) using hypercapnic gases delivered through a controlled gas‐mixing circuit to induce vasoconstriction and vasodilation in ventilated rats. Heart rate and blood oxygen saturation were monitored. Statistical Tests Two‐way analysis of variance with Tukey–Kramer post‐hoc analysis was used to determine significant changes in vasomodulatory response, Ktrans, and ve. Results This new MRI technique revealed impaired vasomodulation in the injured hindlimb. Vasoconstriction was maintained, but vasodilation was blunted up to 21 days postinjury (P &lt; 0.05). However, DCE‐MRI measured Ktrans and ve were significantly (P &lt; 0.05) different from baseline only during acute inflammation (Day 3), with severe inflammation noted on histology. Data Conclusion While conventional DCE‐MRI shows normalization after the acute phase, our new approach reveals sustained functional impairment in muscle microvasculature following I/R injury, with compromised response in vasomotor tone present for at least 21 days. Level of Evidence: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1174–1185.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26308</identifier><identifier>PMID: 30302854</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Damage detection ; Diagnostic systems ; Field strength ; Gases ; Heart rate ; Histology ; hypercapnia ; Injuries ; Ischemia ; ischemia‐reperfusion injury ; Magnetic resonance imaging ; Mapping ; Medical imaging ; microvascular dysfunction ; Microvasculature ; Mixer circuits ; Muscles ; Oxygen content ; Perfusion ; Permeability ; Pharmacology ; Reperfusion ; Rodents ; Skeletal muscle ; Statistical analysis ; Statistical tests ; Variance analysis ; vascular reactivity ; Vasoconstriction ; Vasodilation ; vasomodulation</subject><ispartof>Journal of magnetic resonance imaging, 2019-04, Vol.49 (4), p.1174-1185</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-a076abf1f30c5cd2a3306781b6557847a1198d63057374dfc4d0030d5ce4f0a33</citedby><cites>FETCH-LOGICAL-c3578-a076abf1f30c5cd2a3306781b6557847a1198d63057374dfc4d0030d5ce4f0a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30302854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganesh, Tameshwar</creatorcontrib><creatorcontrib>Zakher, Eric</creatorcontrib><creatorcontrib>Estrada, Marvin</creatorcontrib><creatorcontrib>Cheng, Hai‐Ling Margaret</creatorcontrib><title>Assessment of microvascular dysfunction in acute limb ischemia‐reperfusion injury</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Ischemia‐reperfusion (I/R) injury involves damage to the microvessel structure (eg, increased permeability) and function (blunted vasomodulation). While microstructural damage can be detected with dynamic contrast‐enhanced (DCE) MRI, there is no diagnostic to detect deficits in microvascular function. Purpose To apply a novel MRI method for evaluating dynamic vasomodulation to assess microvascular dysfunction in skeletal muscle following I/R injury. Study Type Prospective, longitudinal. Animal Model Twenty‐three healthy male adult Sprague–Dawley rats. Field Strength/Sequence Dynamic T1 fast field echo imaging at 3.0T with preinjection T1 mapping. Assessment Injury in the left hindlimb was induced using a 3‐hour I/R procedure. Longitudinal MRI scanning was performed up to 74 days, with animals completing assessment at different intervals for histological and laser Doppler perfusion validation. Pharmacokinetic parameters Ktrans and ve were determined following i.v. injection of gadovist (0.1 mmol/kg). Vasomodulatory response was probed on gadofosveset (0.3 mmol/kg) using hypercapnic gases delivered through a controlled gas‐mixing circuit to induce vasoconstriction and vasodilation in ventilated rats. Heart rate and blood oxygen saturation were monitored. Statistical Tests Two‐way analysis of variance with Tukey–Kramer post‐hoc analysis was used to determine significant changes in vasomodulatory response, Ktrans, and ve. Results This new MRI technique revealed impaired vasomodulation in the injured hindlimb. Vasoconstriction was maintained, but vasodilation was blunted up to 21 days postinjury (P &lt; 0.05). However, DCE‐MRI measured Ktrans and ve were significantly (P &lt; 0.05) different from baseline only during acute inflammation (Day 3), with severe inflammation noted on histology. Data Conclusion While conventional DCE‐MRI shows normalization after the acute phase, our new approach reveals sustained functional impairment in muscle microvasculature following I/R injury, with compromised response in vasomotor tone present for at least 21 days. Level of Evidence: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1174–1185.</description><subject>Animal models</subject><subject>Damage detection</subject><subject>Diagnostic systems</subject><subject>Field strength</subject><subject>Gases</subject><subject>Heart rate</subject><subject>Histology</subject><subject>hypercapnia</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>ischemia‐reperfusion injury</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>microvascular dysfunction</subject><subject>Microvasculature</subject><subject>Mixer circuits</subject><subject>Muscles</subject><subject>Oxygen content</subject><subject>Perfusion</subject><subject>Permeability</subject><subject>Pharmacology</subject><subject>Reperfusion</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Variance analysis</subject><subject>vascular reactivity</subject><subject>Vasoconstriction</subject><subject>Vasodilation</subject><subject>vasomodulation</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEYBeAgiq3VjQ8gA25EGP2TTGbSZSleKhXBy3rIZBLMMJeaNEp3PoLP6JOYOtWFC1cJ5ONwchA6xHCGAch51VhzRlIKfAsNMSMkJoyn2-EOjMaYQzZAe85VADAeJ2wXDShQIJwlQ_QwcU4516h2GXU6aoy03atw0tfCRuXKad_KpenayLSRkH6poto0RWScfFaNEZ_vH1YtlNXe9ajydrWPdrSonTrYnCP0dHnxOL2O53dXs-lkHkvKMh4LyFJRaKwpSCZLIiiFNOO4SFl4TjKB8ZiX4Vsso1lSapmUEHqXTKpEQ9AjdNLnLmz34pVb5k3opepatKrzLicYZ5xASAj0-A-tOm_b0C6oMXAKCcVBnfYqjOCcVTpfWNMIu8ox5Oup8_XU-ffUAR9tIn3RqPKX_mwbAO7Bm6nV6p-o_Ob2ftaHfgEN14m9</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Ganesh, Tameshwar</creator><creator>Zakher, Eric</creator><creator>Estrada, Marvin</creator><creator>Cheng, Hai‐Ling Margaret</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201904</creationdate><title>Assessment of microvascular dysfunction in acute limb ischemia‐reperfusion injury</title><author>Ganesh, Tameshwar ; Zakher, Eric ; Estrada, Marvin ; Cheng, Hai‐Ling Margaret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-a076abf1f30c5cd2a3306781b6557847a1198d63057374dfc4d0030d5ce4f0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Damage detection</topic><topic>Diagnostic systems</topic><topic>Field strength</topic><topic>Gases</topic><topic>Heart rate</topic><topic>Histology</topic><topic>hypercapnia</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>ischemia‐reperfusion injury</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>microvascular dysfunction</topic><topic>Microvasculature</topic><topic>Mixer circuits</topic><topic>Muscles</topic><topic>Oxygen content</topic><topic>Perfusion</topic><topic>Permeability</topic><topic>Pharmacology</topic><topic>Reperfusion</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Variance analysis</topic><topic>vascular reactivity</topic><topic>Vasoconstriction</topic><topic>Vasodilation</topic><topic>vasomodulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganesh, Tameshwar</creatorcontrib><creatorcontrib>Zakher, Eric</creatorcontrib><creatorcontrib>Estrada, Marvin</creatorcontrib><creatorcontrib>Cheng, Hai‐Ling Margaret</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganesh, Tameshwar</au><au>Zakher, Eric</au><au>Estrada, Marvin</au><au>Cheng, Hai‐Ling Margaret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of microvascular dysfunction in acute limb ischemia‐reperfusion injury</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-04</date><risdate>2019</risdate><volume>49</volume><issue>4</issue><spage>1174</spage><epage>1185</epage><pages>1174-1185</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Ischemia‐reperfusion (I/R) injury involves damage to the microvessel structure (eg, increased permeability) and function (blunted vasomodulation). While microstructural damage can be detected with dynamic contrast‐enhanced (DCE) MRI, there is no diagnostic to detect deficits in microvascular function. Purpose To apply a novel MRI method for evaluating dynamic vasomodulation to assess microvascular dysfunction in skeletal muscle following I/R injury. Study Type Prospective, longitudinal. Animal Model Twenty‐three healthy male adult Sprague–Dawley rats. Field Strength/Sequence Dynamic T1 fast field echo imaging at 3.0T with preinjection T1 mapping. Assessment Injury in the left hindlimb was induced using a 3‐hour I/R procedure. Longitudinal MRI scanning was performed up to 74 days, with animals completing assessment at different intervals for histological and laser Doppler perfusion validation. Pharmacokinetic parameters Ktrans and ve were determined following i.v. injection of gadovist (0.1 mmol/kg). Vasomodulatory response was probed on gadofosveset (0.3 mmol/kg) using hypercapnic gases delivered through a controlled gas‐mixing circuit to induce vasoconstriction and vasodilation in ventilated rats. Heart rate and blood oxygen saturation were monitored. Statistical Tests Two‐way analysis of variance with Tukey–Kramer post‐hoc analysis was used to determine significant changes in vasomodulatory response, Ktrans, and ve. Results This new MRI technique revealed impaired vasomodulation in the injured hindlimb. Vasoconstriction was maintained, but vasodilation was blunted up to 21 days postinjury (P &lt; 0.05). However, DCE‐MRI measured Ktrans and ve were significantly (P &lt; 0.05) different from baseline only during acute inflammation (Day 3), with severe inflammation noted on histology. Data Conclusion While conventional DCE‐MRI shows normalization after the acute phase, our new approach reveals sustained functional impairment in muscle microvasculature following I/R injury, with compromised response in vasomotor tone present for at least 21 days. Level of Evidence: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1174–1185.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30302854</pmid><doi>10.1002/jmri.26308</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2019-04, Vol.49 (4), p.1174-1185
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2117820630
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Animal models
Damage detection
Diagnostic systems
Field strength
Gases
Heart rate
Histology
hypercapnia
Injuries
Ischemia
ischemia‐reperfusion injury
Magnetic resonance imaging
Mapping
Medical imaging
microvascular dysfunction
Microvasculature
Mixer circuits
Muscles
Oxygen content
Perfusion
Permeability
Pharmacology
Reperfusion
Rodents
Skeletal muscle
Statistical analysis
Statistical tests
Variance analysis
vascular reactivity
Vasoconstriction
Vasodilation
vasomodulation
title Assessment of microvascular dysfunction in acute limb ischemia‐reperfusion injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20microvascular%20dysfunction%20in%20acute%20limb%20ischemia%E2%80%90reperfusion%20injury&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Ganesh,%20Tameshwar&rft.date=2019-04&rft.volume=49&rft.issue=4&rft.spage=1174&rft.epage=1185&rft.pages=1174-1185&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26308&rft_dat=%3Cproquest_cross%3E2190830431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190830431&rft_id=info:pmid/30302854&rfr_iscdi=true