Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization

Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density, but their practical applications have long been hindered by significant safety concerns and poor cycle stability. Solid‐state electrolytes (SSEs) are expected to improve not on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-11, Vol.30 (48), p.e1802068-n/a
Hauptverfasser: Dai, Jiaqi, Yang, Chunpeng, Wang, Chengwei, Pastel, Glenn, Hu, Liangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e1802068
container_title Advanced materials (Weinheim)
container_volume 30
creator Dai, Jiaqi
Yang, Chunpeng
Wang, Chengwei
Pastel, Glenn
Hu, Liangbing
description Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density, but their practical applications have long been hindered by significant safety concerns and poor cycle stability. Solid‐state electrolytes (SSEs) are expected to improve not only the safety but also the energy density of Li‐metal batteries. The key challenge for solid‐state Li‐metal batteries lies in the low ionic conductivity of the SSEs and moreover the interface contact between the electrode and SSE. To achieve feasible solid‐state Li‐metal batteries, it is imperative that the ionic conductivity is improved, especially at the electrode–SSE interface. Herein, recent advances in interface engineering for solid‐state Li‐metal batteries are reported, mainly focusing on garnet‐type SSEs. Various materials to modify the cathode–garnet and Li–garnet interfaces by intermediate layers, alloys, and polymer electrolytes are analyzed. Structural innovations for SSEs including composite electrolytes and multilayer SSE frameworks are reviewed, along with advanced characterization approaches to probe the interfaces, which will provide further insights for garnet‐based solid‐state batteries. Future challenges and the great promise of garnet‐based Li‐metal batteries are discussed to close. Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density. The key challenges for Li‐metal batteries are the low ionic conductivity of the solid‐state electrolytes (SSEs) and the interface contact between the electrode and SSE. Recent advances in interface engineering for Li‐metal batteries are reported with a focus on garnet‐type SSEs.
doi_str_mv 10.1002/adma.201802068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117819710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117819710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4788-77e5ba6fb15cebe31ea7147e21fa67fc922d57cced8a57f7c0ac408f68c99ebd3</originalsourceid><addsrcrecordid>eNqFkb9uFDEQhy0EIkegpUSWaCiyh-39Y5vucgkh0p0oDurVrHecONr1BtsrFCQkHoFn5Enw6UKQaKhmRvPNp5F-hLzkbMkZE2-hH2EpGFdMsEY9IgteC15UTNePyYLpsi50U6kj8izGG8aYbljzlByVrGRCldWCfL_0CYMFg_TcXzmPGJy_onYK9AKCx_Trx89TiNjT3TS4Pk-7BAnpxqVrN4953mKCgZ5Cyh6H8R3dwr6DIZ7QXQqzSXPA3IPv6foaApj9-hskN_nn5InNIL64r8fk8_vzT-sPxebjxeV6tSlMJZUqpMS6g8Z2vDbYYckRJK8kCm6hkdZoIfpaGoO9glpaaRiYiinbKKM1dn15TN4cvLdh-jJjTO3oosFhAI_THFvBuVRcS84y-vof9Gaag8_fZapUWnHR1JlaHigTphgD2vY2uBHCXctZuw-m3QfTPgSTD17da-duxP4B_5NEBvQB-OoGvPuPrl2dbVd_5b8BmeGevQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138981265</pqid></control><display><type>article</type><title>Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Jiaqi ; Yang, Chunpeng ; Wang, Chengwei ; Pastel, Glenn ; Hu, Liangbing</creator><creatorcontrib>Dai, Jiaqi ; Yang, Chunpeng ; Wang, Chengwei ; Pastel, Glenn ; Hu, Liangbing</creatorcontrib><description>Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density, but their practical applications have long been hindered by significant safety concerns and poor cycle stability. Solid‐state electrolytes (SSEs) are expected to improve not only the safety but also the energy density of Li‐metal batteries. The key challenge for solid‐state Li‐metal batteries lies in the low ionic conductivity of the SSEs and moreover the interface contact between the electrode and SSE. To achieve feasible solid‐state Li‐metal batteries, it is imperative that the ionic conductivity is improved, especially at the electrode–SSE interface. Herein, recent advances in interface engineering for solid‐state Li‐metal batteries are reported, mainly focusing on garnet‐type SSEs. Various materials to modify the cathode–garnet and Li–garnet interfaces by intermediate layers, alloys, and polymer electrolytes are analyzed. Structural innovations for SSEs including composite electrolytes and multilayer SSE frameworks are reviewed, along with advanced characterization approaches to probe the interfaces, which will provide further insights for garnet‐based solid‐state batteries. Future challenges and the great promise of garnet‐based Li‐metal batteries are discussed to close. Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density. The key challenges for Li‐metal batteries are the low ionic conductivity of the solid‐state electrolytes (SSEs) and the interface contact between the electrode and SSE. Recent advances in interface engineering for Li‐metal batteries are reported with a focus on garnet‐type SSEs.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201802068</identifier><identifier>PMID: 30302834</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Electrodes ; Electrolytes ; Energy storage ; Flux density ; interface engineering ; Ion currents ; Lithium ; Lithium batteries ; lithium‐metal anodes ; Molten salt electrolytes ; Multilayers ; Safety ; Solid electrolytes ; solid‐state batteries ; Storage batteries ; Storage systems</subject><ispartof>Advanced materials (Weinheim), 2018-11, Vol.30 (48), p.e1802068-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4788-77e5ba6fb15cebe31ea7147e21fa67fc922d57cced8a57f7c0ac408f68c99ebd3</citedby><cites>FETCH-LOGICAL-c4788-77e5ba6fb15cebe31ea7147e21fa67fc922d57cced8a57f7c0ac408f68c99ebd3</cites><orcidid>0000-0002-9456-9315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201802068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201802068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30302834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Yang, Chunpeng</creatorcontrib><creatorcontrib>Wang, Chengwei</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><title>Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density, but their practical applications have long been hindered by significant safety concerns and poor cycle stability. Solid‐state electrolytes (SSEs) are expected to improve not only the safety but also the energy density of Li‐metal batteries. The key challenge for solid‐state Li‐metal batteries lies in the low ionic conductivity of the SSEs and moreover the interface contact between the electrode and SSE. To achieve feasible solid‐state Li‐metal batteries, it is imperative that the ionic conductivity is improved, especially at the electrode–SSE interface. Herein, recent advances in interface engineering for solid‐state Li‐metal batteries are reported, mainly focusing on garnet‐type SSEs. Various materials to modify the cathode–garnet and Li–garnet interfaces by intermediate layers, alloys, and polymer electrolytes are analyzed. Structural innovations for SSEs including composite electrolytes and multilayer SSE frameworks are reviewed, along with advanced characterization approaches to probe the interfaces, which will provide further insights for garnet‐based solid‐state batteries. Future challenges and the great promise of garnet‐based Li‐metal batteries are discussed to close. Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density. The key challenges for Li‐metal batteries are the low ionic conductivity of the solid‐state electrolytes (SSEs) and the interface contact between the electrode and SSE. Recent advances in interface engineering for Li‐metal batteries are reported with a focus on garnet‐type SSEs.</description><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>interface engineering</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium‐metal anodes</subject><subject>Molten salt electrolytes</subject><subject>Multilayers</subject><subject>Safety</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>Storage batteries</subject><subject>Storage systems</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkb9uFDEQhy0EIkegpUSWaCiyh-39Y5vucgkh0p0oDurVrHecONr1BtsrFCQkHoFn5Enw6UKQaKhmRvPNp5F-hLzkbMkZE2-hH2EpGFdMsEY9IgteC15UTNePyYLpsi50U6kj8izGG8aYbljzlByVrGRCldWCfL_0CYMFg_TcXzmPGJy_onYK9AKCx_Trx89TiNjT3TS4Pk-7BAnpxqVrN4953mKCgZ5Cyh6H8R3dwr6DIZ7QXQqzSXPA3IPv6foaApj9-hskN_nn5InNIL64r8fk8_vzT-sPxebjxeV6tSlMJZUqpMS6g8Z2vDbYYckRJK8kCm6hkdZoIfpaGoO9glpaaRiYiinbKKM1dn15TN4cvLdh-jJjTO3oosFhAI_THFvBuVRcS84y-vof9Gaag8_fZapUWnHR1JlaHigTphgD2vY2uBHCXctZuw-m3QfTPgSTD17da-duxP4B_5NEBvQB-OoGvPuPrl2dbVd_5b8BmeGevQ</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Dai, Jiaqi</creator><creator>Yang, Chunpeng</creator><creator>Wang, Chengwei</creator><creator>Pastel, Glenn</creator><creator>Hu, Liangbing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></search><sort><creationdate>201811</creationdate><title>Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization</title><author>Dai, Jiaqi ; Yang, Chunpeng ; Wang, Chengwei ; Pastel, Glenn ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4788-77e5ba6fb15cebe31ea7147e21fa67fc922d57cced8a57f7c0ac408f68c99ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>interface engineering</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium‐metal anodes</topic><topic>Molten salt electrolytes</topic><topic>Multilayers</topic><topic>Safety</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>Storage batteries</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Yang, Chunpeng</creatorcontrib><creatorcontrib>Wang, Chengwei</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Jiaqi</au><au>Yang, Chunpeng</au><au>Wang, Chengwei</au><au>Pastel, Glenn</au><au>Hu, Liangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-11</date><risdate>2018</risdate><volume>30</volume><issue>48</issue><spage>e1802068</spage><epage>n/a</epage><pages>e1802068-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density, but their practical applications have long been hindered by significant safety concerns and poor cycle stability. Solid‐state electrolytes (SSEs) are expected to improve not only the safety but also the energy density of Li‐metal batteries. The key challenge for solid‐state Li‐metal batteries lies in the low ionic conductivity of the SSEs and moreover the interface contact between the electrode and SSE. To achieve feasible solid‐state Li‐metal batteries, it is imperative that the ionic conductivity is improved, especially at the electrode–SSE interface. Herein, recent advances in interface engineering for solid‐state Li‐metal batteries are reported, mainly focusing on garnet‐type SSEs. Various materials to modify the cathode–garnet and Li–garnet interfaces by intermediate layers, alloys, and polymer electrolytes are analyzed. Structural innovations for SSEs including composite electrolytes and multilayer SSE frameworks are reviewed, along with advanced characterization approaches to probe the interfaces, which will provide further insights for garnet‐based solid‐state batteries. Future challenges and the great promise of garnet‐based Li‐metal batteries are discussed to close. Lithium‐metal batteries are considered one of the most promising energy‐storage systems owing to their high energy density. The key challenges for Li‐metal batteries are the low ionic conductivity of the solid‐state electrolytes (SSEs) and the interface contact between the electrode and SSE. Recent advances in interface engineering for Li‐metal batteries are reported with a focus on garnet‐type SSEs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30302834</pmid><doi>10.1002/adma.201802068</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-11, Vol.30 (48), p.e1802068-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2117819710
source Wiley Online Library Journals Frontfile Complete
subjects Electrodes
Electrolytes
Energy storage
Flux density
interface engineering
Ion currents
Lithium
Lithium batteries
lithium‐metal anodes
Molten salt electrolytes
Multilayers
Safety
Solid electrolytes
solid‐state batteries
Storage batteries
Storage systems
title Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20Engineering%20for%20Garnet%E2%80%90Based%20Solid%E2%80%90State%20Lithium%E2%80%90Metal%20Batteries:%20Materials,%20Structures,%20and%20Characterization&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Dai,%20Jiaqi&rft.date=2018-11&rft.volume=30&rft.issue=48&rft.spage=e1802068&rft.epage=n/a&rft.pages=e1802068-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201802068&rft_dat=%3Cproquest_cross%3E2117819710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138981265&rft_id=info:pmid/30302834&rfr_iscdi=true