Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model
Organophosphate esters (OPEs), used as flame retardants and plasticizers, occur at relatively high concentrations in urban air and surface waters. We tested the hypothesis that some OPEs could be considered persistent and mobile organic compounds (PMOCs), using the poly parameter linear free energy...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2018-11, Vol.52 (21), p.12465-12474 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12474 |
---|---|
container_issue | 21 |
container_start_page | 12465 |
container_title | Environmental science & technology |
container_volume | 52 |
creator | Rodgers, Timothy F. M Truong, Jimmy W Jantunen, Liisa M Helm, Paul A Diamond, Miriam L |
description | Organophosphate esters (OPEs), used as flame retardants and plasticizers, occur at relatively high concentrations in urban air and surface waters. We tested the hypothesis that some OPEs could be considered persistent and mobile organic compounds (PMOCs), using the poly parameter linear free energy relationship-modified Multimedia Urban Model (ppLFER-MUM) in Toronto, Canada, as a case study. Modeled air emissions of ∑6OPEs of 3300 (190–190 000) kg yr–1 were 10–100 times higher than emissions of polychlorinated biphenyls (∑5PCBs) and polybrominated diphenyl ethers (∑5PBDEs). Model results suggested that measured ∑6OPE stream concentrations of ∼2000 ng L–1 originate from emissions to urban air transferred to water mostly via precipitation. Water transport removed 7–28% of total air inputs compared to 0.1–10% for PCBs and 2–10% for PBDEs. Chlorinated OPEs were efficiently transported via surface water due to their persistence and high solubility. Loadings of ∑6OPEs to Lake Ontario from wastewater treatment plants, streams, and atmospheric deposition were 70%, 18%, and 13%, respectively, of ∑6OPE loadings of 3100 (1200–45 000) kg yr–1. Our results support the hypothesis that three chlorinated OPEs, tris(2-chloroethyl)phosphate phosphate (TCEP), tris(chloroisopropyl)phosphate (TCiPP), and tris(1,3-dichloroisopropyl)phosphate (TDCiPP), fit the profile of PMOCs due to their mobility and persistence in surface waters. |
doi_str_mv | 10.1021/acs.est.8b02576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117385925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132694510</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-4bd0d4856a0242fd600aae5091c8f8c5127fc548b46841c7c99484badd6a6b5f3</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpabZJz70VQS-FrDcjWbLlY1g2bSEhl13IzYwtOXFwJFeyD-2v72x2m0MgJ4mZ7z1p5jH2RcBKgBQX2KaVS9PKNCB1WbxjC6ElZNpo8Z4tAESeVXlxd8I-pfQIADIH85Gd5HQREsoF-3sb79GH8SGk8QEnxzdpcpFvI_o0hjgt-RVVlxy95ZunPqU--MR7z7chBj-FJV-jR4vLvbB_ItbyXer9PSn4brTPhZt5oJ6zPfJdbKhxE6wbztiHDofkPh_PU7a72mzXP7Pr2x-_1pfXGSpZTplqLFhldIEglexsAYDoNFSiNZ1ptZBl12plGlUYJdqyrSplVIPWFlg0ustP2feD7xjD75m2VdMcrRsG9C7MqZZClLnRldSEfnuFPoY5evodUbksKqUFEHVxoNoYUoquq8dIo8c_tYB6H0tNsdR79TEWUnw9-s4N7eGF_58DAecHYK98efMtu3_OhJfl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132694510</pqid></control><display><type>article</type><title>Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model</title><source>ACS Publications</source><creator>Rodgers, Timothy F. M ; Truong, Jimmy W ; Jantunen, Liisa M ; Helm, Paul A ; Diamond, Miriam L</creator><creatorcontrib>Rodgers, Timothy F. M ; Truong, Jimmy W ; Jantunen, Liisa M ; Helm, Paul A ; Diamond, Miriam L</creatorcontrib><description>Organophosphate esters (OPEs), used as flame retardants and plasticizers, occur at relatively high concentrations in urban air and surface waters. We tested the hypothesis that some OPEs could be considered persistent and mobile organic compounds (PMOCs), using the poly parameter linear free energy relationship-modified Multimedia Urban Model (ppLFER-MUM) in Toronto, Canada, as a case study. Modeled air emissions of ∑6OPEs of 3300 (190–190 000) kg yr–1 were 10–100 times higher than emissions of polychlorinated biphenyls (∑5PCBs) and polybrominated diphenyl ethers (∑5PBDEs). Model results suggested that measured ∑6OPE stream concentrations of ∼2000 ng L–1 originate from emissions to urban air transferred to water mostly via precipitation. Water transport removed 7–28% of total air inputs compared to 0.1–10% for PCBs and 2–10% for PBDEs. Chlorinated OPEs were efficiently transported via surface water due to their persistence and high solubility. Loadings of ∑6OPEs to Lake Ontario from wastewater treatment plants, streams, and atmospheric deposition were 70%, 18%, and 13%, respectively, of ∑6OPE loadings of 3100 (1200–45 000) kg yr–1. Our results support the hypothesis that three chlorinated OPEs, tris(2-chloroethyl)phosphate phosphate (TCEP), tris(chloroisopropyl)phosphate (TCiPP), and tris(1,3-dichloroisopropyl)phosphate (TDCiPP), fit the profile of PMOCs due to their mobility and persistence in surface waters.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b02576</identifier><identifier>PMID: 30231207</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atmospheric pollution deposition ; Case studies ; Emissions ; Esters ; Ethers ; Flame retardants ; Free energy ; Hypotheses ; Multimedia ; Organic chemicals ; Organic compounds ; Organophosphates ; Outdoor air quality ; Parameter modification ; PCB ; PCB compounds ; Phosphates ; Plasticizers ; Polybrominated diphenyl ethers ; Polychlorinated biphenyls ; Polymer solubility ; Precipitation ; Rainfall ; Retardants ; Surface water ; Transport ; Urban areas ; Wastewater treatment ; Wastewater treatment plants ; Water transport</subject><ispartof>Environmental science & technology, 2018-11, Vol.52 (21), p.12465-12474</ispartof><rights>Copyright American Chemical Society Nov 6, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-4bd0d4856a0242fd600aae5091c8f8c5127fc548b46841c7c99484badd6a6b5f3</citedby><cites>FETCH-LOGICAL-a427t-4bd0d4856a0242fd600aae5091c8f8c5127fc548b46841c7c99484badd6a6b5f3</cites><orcidid>0000-0003-0261-9539 ; 0000-0003-1850-404X ; 0000-0001-6296-6431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b02576$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b02576$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30231207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodgers, Timothy F. M</creatorcontrib><creatorcontrib>Truong, Jimmy W</creatorcontrib><creatorcontrib>Jantunen, Liisa M</creatorcontrib><creatorcontrib>Helm, Paul A</creatorcontrib><creatorcontrib>Diamond, Miriam L</creatorcontrib><title>Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Organophosphate esters (OPEs), used as flame retardants and plasticizers, occur at relatively high concentrations in urban air and surface waters. We tested the hypothesis that some OPEs could be considered persistent and mobile organic compounds (PMOCs), using the poly parameter linear free energy relationship-modified Multimedia Urban Model (ppLFER-MUM) in Toronto, Canada, as a case study. Modeled air emissions of ∑6OPEs of 3300 (190–190 000) kg yr–1 were 10–100 times higher than emissions of polychlorinated biphenyls (∑5PCBs) and polybrominated diphenyl ethers (∑5PBDEs). Model results suggested that measured ∑6OPE stream concentrations of ∼2000 ng L–1 originate from emissions to urban air transferred to water mostly via precipitation. Water transport removed 7–28% of total air inputs compared to 0.1–10% for PCBs and 2–10% for PBDEs. Chlorinated OPEs were efficiently transported via surface water due to their persistence and high solubility. Loadings of ∑6OPEs to Lake Ontario from wastewater treatment plants, streams, and atmospheric deposition were 70%, 18%, and 13%, respectively, of ∑6OPE loadings of 3100 (1200–45 000) kg yr–1. Our results support the hypothesis that three chlorinated OPEs, tris(2-chloroethyl)phosphate phosphate (TCEP), tris(chloroisopropyl)phosphate (TCiPP), and tris(1,3-dichloroisopropyl)phosphate (TDCiPP), fit the profile of PMOCs due to their mobility and persistence in surface waters.</description><subject>Atmospheric pollution deposition</subject><subject>Case studies</subject><subject>Emissions</subject><subject>Esters</subject><subject>Ethers</subject><subject>Flame retardants</subject><subject>Free energy</subject><subject>Hypotheses</subject><subject>Multimedia</subject><subject>Organic chemicals</subject><subject>Organic compounds</subject><subject>Organophosphates</subject><subject>Outdoor air quality</subject><subject>Parameter modification</subject><subject>PCB</subject><subject>PCB compounds</subject><subject>Phosphates</subject><subject>Plasticizers</subject><subject>Polybrominated diphenyl ethers</subject><subject>Polychlorinated biphenyls</subject><subject>Polymer solubility</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Retardants</subject><subject>Surface water</subject><subject>Transport</subject><subject>Urban areas</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Water transport</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr3DAQhUVpabZJz70VQS-FrDcjWbLlY1g2bSEhl13IzYwtOXFwJFeyD-2v72x2m0MgJ4mZ7z1p5jH2RcBKgBQX2KaVS9PKNCB1WbxjC6ElZNpo8Z4tAESeVXlxd8I-pfQIADIH85Gd5HQREsoF-3sb79GH8SGk8QEnxzdpcpFvI_o0hjgt-RVVlxy95ZunPqU--MR7z7chBj-FJV-jR4vLvbB_ItbyXer9PSn4brTPhZt5oJ6zPfJdbKhxE6wbztiHDofkPh_PU7a72mzXP7Pr2x-_1pfXGSpZTplqLFhldIEglexsAYDoNFSiNZ1ptZBl12plGlUYJdqyrSplVIPWFlg0ustP2feD7xjD75m2VdMcrRsG9C7MqZZClLnRldSEfnuFPoY5evodUbksKqUFEHVxoNoYUoquq8dIo8c_tYB6H0tNsdR79TEWUnw9-s4N7eGF_58DAecHYK98efMtu3_OhJfl</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Rodgers, Timothy F. M</creator><creator>Truong, Jimmy W</creator><creator>Jantunen, Liisa M</creator><creator>Helm, Paul A</creator><creator>Diamond, Miriam L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0261-9539</orcidid><orcidid>https://orcid.org/0000-0003-1850-404X</orcidid><orcidid>https://orcid.org/0000-0001-6296-6431</orcidid></search><sort><creationdate>20181106</creationdate><title>Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model</title><author>Rodgers, Timothy F. M ; Truong, Jimmy W ; Jantunen, Liisa M ; Helm, Paul A ; Diamond, Miriam L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-4bd0d4856a0242fd600aae5091c8f8c5127fc548b46841c7c99484badd6a6b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric pollution deposition</topic><topic>Case studies</topic><topic>Emissions</topic><topic>Esters</topic><topic>Ethers</topic><topic>Flame retardants</topic><topic>Free energy</topic><topic>Hypotheses</topic><topic>Multimedia</topic><topic>Organic chemicals</topic><topic>Organic compounds</topic><topic>Organophosphates</topic><topic>Outdoor air quality</topic><topic>Parameter modification</topic><topic>PCB</topic><topic>PCB compounds</topic><topic>Phosphates</topic><topic>Plasticizers</topic><topic>Polybrominated diphenyl ethers</topic><topic>Polychlorinated biphenyls</topic><topic>Polymer solubility</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Retardants</topic><topic>Surface water</topic><topic>Transport</topic><topic>Urban areas</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, Timothy F. M</creatorcontrib><creatorcontrib>Truong, Jimmy W</creatorcontrib><creatorcontrib>Jantunen, Liisa M</creatorcontrib><creatorcontrib>Helm, Paul A</creatorcontrib><creatorcontrib>Diamond, Miriam L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, Timothy F. M</au><au>Truong, Jimmy W</au><au>Jantunen, Liisa M</au><au>Helm, Paul A</au><au>Diamond, Miriam L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>52</volume><issue>21</issue><spage>12465</spage><epage>12474</epage><pages>12465-12474</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Organophosphate esters (OPEs), used as flame retardants and plasticizers, occur at relatively high concentrations in urban air and surface waters. We tested the hypothesis that some OPEs could be considered persistent and mobile organic compounds (PMOCs), using the poly parameter linear free energy relationship-modified Multimedia Urban Model (ppLFER-MUM) in Toronto, Canada, as a case study. Modeled air emissions of ∑6OPEs of 3300 (190–190 000) kg yr–1 were 10–100 times higher than emissions of polychlorinated biphenyls (∑5PCBs) and polybrominated diphenyl ethers (∑5PBDEs). Model results suggested that measured ∑6OPE stream concentrations of ∼2000 ng L–1 originate from emissions to urban air transferred to water mostly via precipitation. Water transport removed 7–28% of total air inputs compared to 0.1–10% for PCBs and 2–10% for PBDEs. Chlorinated OPEs were efficiently transported via surface water due to their persistence and high solubility. Loadings of ∑6OPEs to Lake Ontario from wastewater treatment plants, streams, and atmospheric deposition were 70%, 18%, and 13%, respectively, of ∑6OPE loadings of 3100 (1200–45 000) kg yr–1. Our results support the hypothesis that three chlorinated OPEs, tris(2-chloroethyl)phosphate phosphate (TCEP), tris(chloroisopropyl)phosphate (TCiPP), and tris(1,3-dichloroisopropyl)phosphate (TDCiPP), fit the profile of PMOCs due to their mobility and persistence in surface waters.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30231207</pmid><doi>10.1021/acs.est.8b02576</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0261-9539</orcidid><orcidid>https://orcid.org/0000-0003-1850-404X</orcidid><orcidid>https://orcid.org/0000-0001-6296-6431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2018-11, Vol.52 (21), p.12465-12474 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2117385925 |
source | ACS Publications |
subjects | Atmospheric pollution deposition Case studies Emissions Esters Ethers Flame retardants Free energy Hypotheses Multimedia Organic chemicals Organic compounds Organophosphates Outdoor air quality Parameter modification PCB PCB compounds Phosphates Plasticizers Polybrominated diphenyl ethers Polychlorinated biphenyls Polymer solubility Precipitation Rainfall Retardants Surface water Transport Urban areas Wastewater treatment Wastewater treatment plants Water transport |
title | Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organophosphate%20Ester%20Transport,%20Fate,%20and%20Emissions%20in%20Toronto,%20Canada,%20Estimated%20Using%20an%20Updated%20Multimedia%20Urban%20Model&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Rodgers,%20Timothy%20F.%20M&rft.date=2018-11-06&rft.volume=52&rft.issue=21&rft.spage=12465&rft.epage=12474&rft.pages=12465-12474&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b02576&rft_dat=%3Cproquest_cross%3E2132694510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132694510&rft_id=info:pmid/30231207&rfr_iscdi=true |