Catalytic dehydrogenative decarboxyolefination of carboxylic acids
Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approac...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2018-12, Vol.10 (12), p.1229-1233 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1233 |
---|---|
container_issue | 12 |
container_start_page | 1229 |
container_title | Nature chemistry |
container_volume | 10 |
creator | Sun, Xiang Chen, Junting Ritter, Tobias |
description | Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approaches to making alkenes from abundant fatty acids have been evaluated. However, all attempts so far have required at least one stoichiometric additive, which is an obstruction for applications at larger scales. Here, we report an approach to making olefins from carboxylic acids, in which every additional reaction constituent can be used as a catalyst. We show how abundant fatty acids can be converted to alpha-olefins, and expand the method to include structurally complex carboxylic acids, giving access to synthetically versatile intermediates. Our approach is enabled by the cooperative interplay between a cobalt catalyst, which functions as a proton reduction catalyst, and a photoredox catalyst, which mediates oxidative decarboxylation; coupling both processes enables catalytic conversion of carboxylic acids to olefins.
A direct conversion of carboxylic acids to alpha-olefins without the need for a stoichiometric additive has now been reported. The transformation is enabled by a dual cobalt/iridium proton-reduction–photoredox catalyst system, and can proceed on abundant fatty acids as well as on complex carboxylic acids. |
doi_str_mv | 10.1038/s41557-018-0142-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117382655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117382655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-390c27776bcb2ea2682a9dfc4a5b4ec58d7aa0b9e64df8bf241e1b4e35718e3f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotlZ_gBspuHEzmucks9TiCwpudB0ymZs6ZTqpyYw4_96U1gqCi3CTe79zcjkInRN8TTBTN5ETIWSGiUqH04wfoDGRQmSc8eJwf2d4hE5iXGKcC0byYzRimBZSCjJGdzPTmWboajut4H2ogl9Aa7r6E9LbmlD6r8E34OpN07dT76a7bpMkxtZVPEVHzjQRznZ1gt4e7l9nT9n85fF5djvPLMdFl7ECWyqlzEtbUjA0V9QUlbPciJKDFaqSxuCygJxXTpWOcgIkTZiQRAFzbIKutr7r4D96iJ1e1dFC05gWfB81JUQyRXMhEnr5B136PrRpu0SxXHCJuUoU2VI2-BgDOL0O9cqEQROsNwHrbcA6Baw3AWueNBc7575cQbVX_CSaALoFYhq1Cwi_X__v-g0JJ4Y4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136547048</pqid></control><display><type>article</type><title>Catalytic dehydrogenative decarboxyolefination of carboxylic acids</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Xiang ; Chen, Junting ; Ritter, Tobias</creator><creatorcontrib>Sun, Xiang ; Chen, Junting ; Ritter, Tobias</creatorcontrib><description>Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approaches to making alkenes from abundant fatty acids have been evaluated. However, all attempts so far have required at least one stoichiometric additive, which is an obstruction for applications at larger scales. Here, we report an approach to making olefins from carboxylic acids, in which every additional reaction constituent can be used as a catalyst. We show how abundant fatty acids can be converted to alpha-olefins, and expand the method to include structurally complex carboxylic acids, giving access to synthetically versatile intermediates. Our approach is enabled by the cooperative interplay between a cobalt catalyst, which functions as a proton reduction catalyst, and a photoredox catalyst, which mediates oxidative decarboxylation; coupling both processes enables catalytic conversion of carboxylic acids to olefins.
A direct conversion of carboxylic acids to alpha-olefins without the need for a stoichiometric additive has now been reported. The transformation is enabled by a dual cobalt/iridium proton-reduction–photoredox catalyst system, and can proceed on abundant fatty acids as well as on complex carboxylic acids.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-018-0142-4</identifier><identifier>PMID: 30297751</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403 ; 639/638/77/884 ; 639/638/77/890 ; Alkenes ; Analytical Chemistry ; Biochemistry ; Carboxylic acids ; Catalysts ; Catalytic converters ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cobalt ; Decarboxylation ; Dehydrogenation ; Detergents ; Fatty acids ; Inorganic Chemistry ; Intermediates ; Lubricants ; Naphtha ; Organic Chemistry ; Physical Chemistry ; Polymers ; Production methods ; Sustainable production</subject><ispartof>Nature chemistry, 2018-12, Vol.10 (12), p.1229-1233</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-390c27776bcb2ea2682a9dfc4a5b4ec58d7aa0b9e64df8bf241e1b4e35718e3f3</citedby><cites>FETCH-LOGICAL-c409t-390c27776bcb2ea2682a9dfc4a5b4ec58d7aa0b9e64df8bf241e1b4e35718e3f3</cites><orcidid>0000-0001-6004-7087 ; 0000-0002-6957-450X ; 0000-0001-8452-7122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-018-0142-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-018-0142-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30297751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Chen, Junting</creatorcontrib><creatorcontrib>Ritter, Tobias</creatorcontrib><title>Catalytic dehydrogenative decarboxyolefination of carboxylic acids</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approaches to making alkenes from abundant fatty acids have been evaluated. However, all attempts so far have required at least one stoichiometric additive, which is an obstruction for applications at larger scales. Here, we report an approach to making olefins from carboxylic acids, in which every additional reaction constituent can be used as a catalyst. We show how abundant fatty acids can be converted to alpha-olefins, and expand the method to include structurally complex carboxylic acids, giving access to synthetically versatile intermediates. Our approach is enabled by the cooperative interplay between a cobalt catalyst, which functions as a proton reduction catalyst, and a photoredox catalyst, which mediates oxidative decarboxylation; coupling both processes enables catalytic conversion of carboxylic acids to olefins.
A direct conversion of carboxylic acids to alpha-olefins without the need for a stoichiometric additive has now been reported. The transformation is enabled by a dual cobalt/iridium proton-reduction–photoredox catalyst system, and can proceed on abundant fatty acids as well as on complex carboxylic acids.</description><subject>639/638/403</subject><subject>639/638/77/884</subject><subject>639/638/77/890</subject><subject>Alkenes</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Carboxylic acids</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cobalt</subject><subject>Decarboxylation</subject><subject>Dehydrogenation</subject><subject>Detergents</subject><subject>Fatty acids</subject><subject>Inorganic Chemistry</subject><subject>Intermediates</subject><subject>Lubricants</subject><subject>Naphtha</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Production methods</subject><subject>Sustainable production</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMotlZ_gBspuHEzmucks9TiCwpudB0ymZs6ZTqpyYw4_96U1gqCi3CTe79zcjkInRN8TTBTN5ETIWSGiUqH04wfoDGRQmSc8eJwf2d4hE5iXGKcC0byYzRimBZSCjJGdzPTmWboajut4H2ogl9Aa7r6E9LbmlD6r8E34OpN07dT76a7bpMkxtZVPEVHzjQRznZ1gt4e7l9nT9n85fF5djvPLMdFl7ECWyqlzEtbUjA0V9QUlbPciJKDFaqSxuCygJxXTpWOcgIkTZiQRAFzbIKutr7r4D96iJ1e1dFC05gWfB81JUQyRXMhEnr5B136PrRpu0SxXHCJuUoU2VI2-BgDOL0O9cqEQROsNwHrbcA6Baw3AWueNBc7575cQbVX_CSaALoFYhq1Cwi_X__v-g0JJ4Y4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Sun, Xiang</creator><creator>Chen, Junting</creator><creator>Ritter, Tobias</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6004-7087</orcidid><orcidid>https://orcid.org/0000-0002-6957-450X</orcidid><orcidid>https://orcid.org/0000-0001-8452-7122</orcidid></search><sort><creationdate>20181201</creationdate><title>Catalytic dehydrogenative decarboxyolefination of carboxylic acids</title><author>Sun, Xiang ; Chen, Junting ; Ritter, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-390c27776bcb2ea2682a9dfc4a5b4ec58d7aa0b9e64df8bf241e1b4e35718e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/403</topic><topic>639/638/77/884</topic><topic>639/638/77/890</topic><topic>Alkenes</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Carboxylic acids</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cobalt</topic><topic>Decarboxylation</topic><topic>Dehydrogenation</topic><topic>Detergents</topic><topic>Fatty acids</topic><topic>Inorganic Chemistry</topic><topic>Intermediates</topic><topic>Lubricants</topic><topic>Naphtha</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Production methods</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Chen, Junting</creatorcontrib><creatorcontrib>Ritter, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiang</au><au>Chen, Junting</au><au>Ritter, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic dehydrogenative decarboxyolefination of carboxylic acids</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>1229</spage><epage>1233</epage><pages>1229-1233</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approaches to making alkenes from abundant fatty acids have been evaluated. However, all attempts so far have required at least one stoichiometric additive, which is an obstruction for applications at larger scales. Here, we report an approach to making olefins from carboxylic acids, in which every additional reaction constituent can be used as a catalyst. We show how abundant fatty acids can be converted to alpha-olefins, and expand the method to include structurally complex carboxylic acids, giving access to synthetically versatile intermediates. Our approach is enabled by the cooperative interplay between a cobalt catalyst, which functions as a proton reduction catalyst, and a photoredox catalyst, which mediates oxidative decarboxylation; coupling both processes enables catalytic conversion of carboxylic acids to olefins.
A direct conversion of carboxylic acids to alpha-olefins without the need for a stoichiometric additive has now been reported. The transformation is enabled by a dual cobalt/iridium proton-reduction–photoredox catalyst system, and can proceed on abundant fatty acids as well as on complex carboxylic acids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30297751</pmid><doi>10.1038/s41557-018-0142-4</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6004-7087</orcidid><orcidid>https://orcid.org/0000-0002-6957-450X</orcidid><orcidid>https://orcid.org/0000-0001-8452-7122</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2018-12, Vol.10 (12), p.1229-1233 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2117382655 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/638/403 639/638/77/884 639/638/77/890 Alkenes Analytical Chemistry Biochemistry Carboxylic acids Catalysts Catalytic converters Chemistry Chemistry and Materials Science Chemistry/Food Science Cobalt Decarboxylation Dehydrogenation Detergents Fatty acids Inorganic Chemistry Intermediates Lubricants Naphtha Organic Chemistry Physical Chemistry Polymers Production methods Sustainable production |
title | Catalytic dehydrogenative decarboxyolefination of carboxylic acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20dehydrogenative%20decarboxyolefination%20of%20carboxylic%20acids&rft.jtitle=Nature%20chemistry&rft.au=Sun,%20Xiang&rft.date=2018-12-01&rft.volume=10&rft.issue=12&rft.spage=1229&rft.epage=1233&rft.pages=1229-1233&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-018-0142-4&rft_dat=%3Cproquest_cross%3E2117382655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136547048&rft_id=info:pmid/30297751&rfr_iscdi=true |