Application of ensemble deep neural network to metabolomics studies

Deep neural network (DNN) is a useful machine learning approach, although its applicability to metabolomics studies has rarely been explored. Here we describe the development of an ensemble DNN (EDNN) algorithm and its applicability to metabolomics studies. As a model case, the developed EDNN approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2018-12, Vol.1037, p.230-236
Hauptverfasser: Asakura, Taiga, Date, Yasuhiro, Kikuchi, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 230
container_title Analytica chimica acta
container_volume 1037
creator Asakura, Taiga
Date, Yasuhiro
Kikuchi, Jun
description Deep neural network (DNN) is a useful machine learning approach, although its applicability to metabolomics studies has rarely been explored. Here we describe the development of an ensemble DNN (EDNN) algorithm and its applicability to metabolomics studies. As a model case, the developed EDNN approach was applied to metabolomics data of various fish species collected from Japan coastal and estuarine environments for evaluation of a regression performance compared with conventional DNN, random forest, and support vector machine algorithms. This study also revealed that the metabolic profiles of fish muscles were correlated with fish size (growth) in a species-dependent manner. The performance of EDNN regression for fish size based on metabolic profiles was superior to that of DNN, random forest, and support vector machine algorithms. The EDNN approach, therefore, should be helpful for analyses of regression and concerns pertaining to classification in metabolomics studies. [Display omitted]
doi_str_mv 10.1016/j.aca.2018.02.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2117154566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267018302605</els_id><sourcerecordid>2148947124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-f7e3a81ee0b34557fc4dd097dd0017b09c5aadd3238b4ba50bdde2bbab86a9f73</originalsourceid><addsrcrecordid>eNp9kM1K5UAQhRsZ0TvqA7iRwGzcJFP9k3SCK7noKAiz0XXTPxXoa5KO3ckMvr0tV13MYjZVFHznUHyEnFOoKNDm567SVlcMaFsBq0DUB2RDW8lLwZn4RjYAwEvWSDgm31Pa5ZNREEfkmAPrGOvkhmyv53nwVi8-TEXoC5wSjmbAwiHOxYRr1ENey98Qn4slFCMu2oQhjN6mIi2r85hOyWGvh4RnH_uEPN3ePG7vyoffv-631w-lFV29lL1ErluKCIaLupa9Fc5BJ_MAKg10ttbaOc54a4TRNRjnkBmjTdvorpf8hFzue-cYXlZMixp9sjgMesKwJsUolbQWddNk9Mc_6C6sccrfZUq0nZCUiUzRPWVjSClir-boRx1fFQX1bljtVDas3g0rYCobzpmLj-bVjOi-Ep9KM3C1BzCr-OMxqmQ9Thadj2gX5YL_T_0bF1iLlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148947124</pqid></control><display><type>article</type><title>Application of ensemble deep neural network to metabolomics studies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Asakura, Taiga ; Date, Yasuhiro ; Kikuchi, Jun</creator><creatorcontrib>Asakura, Taiga ; Date, Yasuhiro ; Kikuchi, Jun</creatorcontrib><description>Deep neural network (DNN) is a useful machine learning approach, although its applicability to metabolomics studies has rarely been explored. Here we describe the development of an ensemble DNN (EDNN) algorithm and its applicability to metabolomics studies. As a model case, the developed EDNN approach was applied to metabolomics data of various fish species collected from Japan coastal and estuarine environments for evaluation of a regression performance compared with conventional DNN, random forest, and support vector machine algorithms. This study also revealed that the metabolic profiles of fish muscles were correlated with fish size (growth) in a species-dependent manner. The performance of EDNN regression for fish size based on metabolic profiles was superior to that of DNN, random forest, and support vector machine algorithms. The EDNN approach, therefore, should be helpful for analyses of regression and concerns pertaining to classification in metabolomics studies. [Display omitted]</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2018.02.045</identifier><identifier>PMID: 30292297</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Coastal environments ; Data processing ; Deep Learning ; Deep neural network ; Ensemble learning ; Estuaries ; Estuarine environments ; Fish ; Learning algorithms ; Machine learning ; Metabolism ; Metabolomics ; Metabolomics - methods ; Muscles ; Neural networks ; NMR ; Nuclear magnetic resonance ; Regression analysis ; Support vector machines</subject><ispartof>Analytica chimica acta, 2018-12, Vol.1037, p.230-236</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 11, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-f7e3a81ee0b34557fc4dd097dd0017b09c5aadd3238b4ba50bdde2bbab86a9f73</citedby><cites>FETCH-LOGICAL-c495t-f7e3a81ee0b34557fc4dd097dd0017b09c5aadd3238b4ba50bdde2bbab86a9f73</cites><orcidid>0000-0002-6809-394X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2018.02.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30292297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asakura, Taiga</creatorcontrib><creatorcontrib>Date, Yasuhiro</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><title>Application of ensemble deep neural network to metabolomics studies</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Deep neural network (DNN) is a useful machine learning approach, although its applicability to metabolomics studies has rarely been explored. Here we describe the development of an ensemble DNN (EDNN) algorithm and its applicability to metabolomics studies. As a model case, the developed EDNN approach was applied to metabolomics data of various fish species collected from Japan coastal and estuarine environments for evaluation of a regression performance compared with conventional DNN, random forest, and support vector machine algorithms. This study also revealed that the metabolic profiles of fish muscles were correlated with fish size (growth) in a species-dependent manner. The performance of EDNN regression for fish size based on metabolic profiles was superior to that of DNN, random forest, and support vector machine algorithms. The EDNN approach, therefore, should be helpful for analyses of regression and concerns pertaining to classification in metabolomics studies. [Display omitted]</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Coastal environments</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Deep neural network</subject><subject>Ensemble learning</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Fish</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Muscles</subject><subject>Neural networks</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Regression analysis</subject><subject>Support vector machines</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1K5UAQhRsZ0TvqA7iRwGzcJFP9k3SCK7noKAiz0XXTPxXoa5KO3ckMvr0tV13MYjZVFHznUHyEnFOoKNDm567SVlcMaFsBq0DUB2RDW8lLwZn4RjYAwEvWSDgm31Pa5ZNREEfkmAPrGOvkhmyv53nwVi8-TEXoC5wSjmbAwiHOxYRr1ENey98Qn4slFCMu2oQhjN6mIi2r85hOyWGvh4RnH_uEPN3ePG7vyoffv-631w-lFV29lL1ErluKCIaLupa9Fc5BJ_MAKg10ttbaOc54a4TRNRjnkBmjTdvorpf8hFzue-cYXlZMixp9sjgMesKwJsUolbQWddNk9Mc_6C6sccrfZUq0nZCUiUzRPWVjSClir-boRx1fFQX1bljtVDas3g0rYCobzpmLj-bVjOi-Ep9KM3C1BzCr-OMxqmQ9Thadj2gX5YL_T_0bF1iLlw</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Asakura, Taiga</creator><creator>Date, Yasuhiro</creator><creator>Kikuchi, Jun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6809-394X</orcidid></search><sort><creationdate>20181211</creationdate><title>Application of ensemble deep neural network to metabolomics studies</title><author>Asakura, Taiga ; Date, Yasuhiro ; Kikuchi, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-f7e3a81ee0b34557fc4dd097dd0017b09c5aadd3238b4ba50bdde2bbab86a9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Coastal environments</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Deep neural network</topic><topic>Ensemble learning</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Fish</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Muscles</topic><topic>Neural networks</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Regression analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asakura, Taiga</creatorcontrib><creatorcontrib>Date, Yasuhiro</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asakura, Taiga</au><au>Date, Yasuhiro</au><au>Kikuchi, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ensemble deep neural network to metabolomics studies</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>1037</volume><spage>230</spage><epage>236</epage><pages>230-236</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>Deep neural network (DNN) is a useful machine learning approach, although its applicability to metabolomics studies has rarely been explored. Here we describe the development of an ensemble DNN (EDNN) algorithm and its applicability to metabolomics studies. As a model case, the developed EDNN approach was applied to metabolomics data of various fish species collected from Japan coastal and estuarine environments for evaluation of a regression performance compared with conventional DNN, random forest, and support vector machine algorithms. This study also revealed that the metabolic profiles of fish muscles were correlated with fish size (growth) in a species-dependent manner. The performance of EDNN regression for fish size based on metabolic profiles was superior to that of DNN, random forest, and support vector machine algorithms. The EDNN approach, therefore, should be helpful for analyses of regression and concerns pertaining to classification in metabolomics studies. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30292297</pmid><doi>10.1016/j.aca.2018.02.045</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6809-394X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2018-12, Vol.1037, p.230-236
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_2117154566
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Artificial intelligence
Artificial neural networks
Coastal environments
Data processing
Deep Learning
Deep neural network
Ensemble learning
Estuaries
Estuarine environments
Fish
Learning algorithms
Machine learning
Metabolism
Metabolomics
Metabolomics - methods
Muscles
Neural networks
NMR
Nuclear magnetic resonance
Regression analysis
Support vector machines
title Application of ensemble deep neural network to metabolomics studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ensemble%20deep%20neural%20network%20to%20metabolomics%20studies&rft.jtitle=Analytica%20chimica%20acta&rft.au=Asakura,%20Taiga&rft.date=2018-12-11&rft.volume=1037&rft.spage=230&rft.epage=236&rft.pages=230-236&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2018.02.045&rft_dat=%3Cproquest_cross%3E2148947124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148947124&rft_id=info:pmid/30292297&rft_els_id=S0003267018302605&rfr_iscdi=true