Roads from vaccines to therapies
Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generatio...
Gespeichert in:
Veröffentlicht in: | Movement disorders 2004-03, Vol.19 (S8), p.S48-S52 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S52 |
---|---|
container_issue | S8 |
container_start_page | S48 |
container_title | Movement disorders |
container_volume | 19 |
creator | Smith, Leonard A. Jensen, Melody J. Montgomery, Vicki A. Brown, Douglas R. Ahmed, S. Ashrat Smith, Theresa J. |
description | Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society |
doi_str_mv | 10.1002/mds.20009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21170252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21170252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</originalsourceid><addsrcrecordid>eNp10E1PwkAQBuCN0QiiB_-A6UUTD8Wd3e5HjwYVjKgJavC2WbbTWG0p7oLKvxcEPy6e5vLMvJmXkH2gbaCUnVRZaDNKabpBmiA4xJoJtUmaVGsRc9CiQXZCeKYUQIDcJg0QlCkqkiaJBrXNQpT7uorerHPFGEM0raPpE3o7KTDskq3clgH31rNFHi7O7zu9uH_bveyc9mOXMJrGOXMaMsu1VpDwXKNOc2lzlWibMiGkHSHIVAqOSvMsQcmROy4zjpqiyCRvkaPV3YmvX2cYpqYqgsOytGOsZ8EwAEWZYAt4vILO1yF4zM3EF5X1cwPULOswizrMVx0Le7A-OhtVmP3K9f8LcLgGNjhb5t6OXRH-OCk5wDL0ZOXeixLn_yea67O77-h4tVGEKX78bFj_YqTiSpjhTdfAY2941Rsow_gnKiOCzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21170252</pqid></control><display><type>article</type><title>Roads from vaccines to therapies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Smith, Leonard A. ; Jensen, Melody J. ; Montgomery, Vicki A. ; Brown, Douglas R. ; Ahmed, S. Ashrat ; Smith, Theresa J.</creator><creatorcontrib>Smith, Leonard A. ; Jensen, Melody J. ; Montgomery, Vicki A. ; Brown, Douglas R. ; Ahmed, S. Ashrat ; Smith, Theresa J.</creatorcontrib><description>Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society</description><identifier>ISSN: 0885-3185</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.20009</identifier><identifier>PMID: 15027054</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; botulinum ; Botulinum Toxins - chemistry ; Botulinum Toxins - genetics ; Botulinum Toxins - immunology ; Botulism - immunology ; Botulism - prevention & control ; Clostridium botulinum ; Dose-Response Relationship, Immunologic ; Escherichia coli ; Escherichia coli - immunology ; Escherichia coli Proteins - immunology ; Medical sciences ; Mice ; Neurology ; neurotoxins ; Peptide Fragments - immunology ; Pichia pastoris ; Pichinde virus - immunology ; Primates ; therapies ; vaccines ; Vaccines - therapeutic use ; Vaccines, Synthetic</subject><ispartof>Movement disorders, 2004-03, Vol.19 (S8), p.S48-S52</ispartof><rights>Copyright © 2004 Movement Disorder Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2004 Movement Disorder Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</citedby><cites>FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.20009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.20009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15663112$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15027054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Leonard A.</creatorcontrib><creatorcontrib>Jensen, Melody J.</creatorcontrib><creatorcontrib>Montgomery, Vicki A.</creatorcontrib><creatorcontrib>Brown, Douglas R.</creatorcontrib><creatorcontrib>Ahmed, S. Ashrat</creatorcontrib><creatorcontrib>Smith, Theresa J.</creatorcontrib><title>Roads from vaccines to therapies</title><title>Movement disorders</title><addtitle>Mov. Disord</addtitle><description>Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>botulinum</subject><subject>Botulinum Toxins - chemistry</subject><subject>Botulinum Toxins - genetics</subject><subject>Botulinum Toxins - immunology</subject><subject>Botulism - immunology</subject><subject>Botulism - prevention & control</subject><subject>Clostridium botulinum</subject><subject>Dose-Response Relationship, Immunologic</subject><subject>Escherichia coli</subject><subject>Escherichia coli - immunology</subject><subject>Escherichia coli Proteins - immunology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Neurology</subject><subject>neurotoxins</subject><subject>Peptide Fragments - immunology</subject><subject>Pichia pastoris</subject><subject>Pichinde virus - immunology</subject><subject>Primates</subject><subject>therapies</subject><subject>vaccines</subject><subject>Vaccines - therapeutic use</subject><subject>Vaccines, Synthetic</subject><issn>0885-3185</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1PwkAQBuCN0QiiB_-A6UUTD8Wd3e5HjwYVjKgJavC2WbbTWG0p7oLKvxcEPy6e5vLMvJmXkH2gbaCUnVRZaDNKabpBmiA4xJoJtUmaVGsRc9CiQXZCeKYUQIDcJg0QlCkqkiaJBrXNQpT7uorerHPFGEM0raPpE3o7KTDskq3clgH31rNFHi7O7zu9uH_bveyc9mOXMJrGOXMaMsu1VpDwXKNOc2lzlWibMiGkHSHIVAqOSvMsQcmROy4zjpqiyCRvkaPV3YmvX2cYpqYqgsOytGOsZ8EwAEWZYAt4vILO1yF4zM3EF5X1cwPULOswizrMVx0Le7A-OhtVmP3K9f8LcLgGNjhb5t6OXRH-OCk5wDL0ZOXeixLn_yea67O77-h4tVGEKX78bFj_YqTiSpjhTdfAY2941Rsow_gnKiOCzg</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Smith, Leonard A.</creator><creator>Jensen, Melody J.</creator><creator>Montgomery, Vicki A.</creator><creator>Brown, Douglas R.</creator><creator>Ahmed, S. Ashrat</creator><creator>Smith, Theresa J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TK</scope><scope>C1K</scope><scope>H94</scope></search><sort><creationdate>200403</creationdate><title>Roads from vaccines to therapies</title><author>Smith, Leonard A. ; Jensen, Melody J. ; Montgomery, Vicki A. ; Brown, Douglas R. ; Ahmed, S. Ashrat ; Smith, Theresa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>botulinum</topic><topic>Botulinum Toxins - chemistry</topic><topic>Botulinum Toxins - genetics</topic><topic>Botulinum Toxins - immunology</topic><topic>Botulism - immunology</topic><topic>Botulism - prevention & control</topic><topic>Clostridium botulinum</topic><topic>Dose-Response Relationship, Immunologic</topic><topic>Escherichia coli</topic><topic>Escherichia coli - immunology</topic><topic>Escherichia coli Proteins - immunology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Neurology</topic><topic>neurotoxins</topic><topic>Peptide Fragments - immunology</topic><topic>Pichia pastoris</topic><topic>Pichinde virus - immunology</topic><topic>Primates</topic><topic>therapies</topic><topic>vaccines</topic><topic>Vaccines - therapeutic use</topic><topic>Vaccines, Synthetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Leonard A.</creatorcontrib><creatorcontrib>Jensen, Melody J.</creatorcontrib><creatorcontrib>Montgomery, Vicki A.</creatorcontrib><creatorcontrib>Brown, Douglas R.</creatorcontrib><creatorcontrib>Ahmed, S. Ashrat</creatorcontrib><creatorcontrib>Smith, Theresa J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Leonard A.</au><au>Jensen, Melody J.</au><au>Montgomery, Vicki A.</au><au>Brown, Douglas R.</au><au>Ahmed, S. Ashrat</au><au>Smith, Theresa J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roads from vaccines to therapies</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov. Disord</addtitle><date>2004-03</date><risdate>2004</risdate><volume>19</volume><issue>S8</issue><spage>S48</spage><epage>S52</epage><pages>S48-S52</pages><issn>0885-3185</issn><eissn>1531-8257</eissn><abstract>Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15027054</pmid><doi>10.1002/mds.20009</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3185 |
ispartof | Movement disorders, 2004-03, Vol.19 (S8), p.S48-S52 |
issn | 0885-3185 1531-8257 |
language | eng |
recordid | cdi_proquest_miscellaneous_21170252 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biological and medical sciences botulinum Botulinum Toxins - chemistry Botulinum Toxins - genetics Botulinum Toxins - immunology Botulism - immunology Botulism - prevention & control Clostridium botulinum Dose-Response Relationship, Immunologic Escherichia coli Escherichia coli - immunology Escherichia coli Proteins - immunology Medical sciences Mice Neurology neurotoxins Peptide Fragments - immunology Pichia pastoris Pichinde virus - immunology Primates therapies vaccines Vaccines - therapeutic use Vaccines, Synthetic |
title | Roads from vaccines to therapies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roads%20from%20vaccines%20to%20therapies&rft.jtitle=Movement%20disorders&rft.au=Smith,%20Leonard%20A.&rft.date=2004-03&rft.volume=19&rft.issue=S8&rft.spage=S48&rft.epage=S52&rft.pages=S48-S52&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.20009&rft_dat=%3Cproquest_cross%3E21170252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21170252&rft_id=info:pmid/15027054&rfr_iscdi=true |