Roads from vaccines to therapies

Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Movement disorders 2004-03, Vol.19 (S8), p.S48-S52
Hauptverfasser: Smith, Leonard A., Jensen, Melody J., Montgomery, Vicki A., Brown, Douglas R., Ahmed, S. Ashrat, Smith, Theresa J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S52
container_issue S8
container_start_page S48
container_title Movement disorders
container_volume 19
creator Smith, Leonard A.
Jensen, Melody J.
Montgomery, Vicki A.
Brown, Douglas R.
Ahmed, S. Ashrat
Smith, Theresa J.
description Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society
doi_str_mv 10.1002/mds.20009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21170252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21170252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</originalsourceid><addsrcrecordid>eNp10E1PwkAQBuCN0QiiB_-A6UUTD8Wd3e5HjwYVjKgJavC2WbbTWG0p7oLKvxcEPy6e5vLMvJmXkH2gbaCUnVRZaDNKabpBmiA4xJoJtUmaVGsRc9CiQXZCeKYUQIDcJg0QlCkqkiaJBrXNQpT7uorerHPFGEM0raPpE3o7KTDskq3clgH31rNFHi7O7zu9uH_bveyc9mOXMJrGOXMaMsu1VpDwXKNOc2lzlWibMiGkHSHIVAqOSvMsQcmROy4zjpqiyCRvkaPV3YmvX2cYpqYqgsOytGOsZ8EwAEWZYAt4vILO1yF4zM3EF5X1cwPULOswizrMVx0Le7A-OhtVmP3K9f8LcLgGNjhb5t6OXRH-OCk5wDL0ZOXeixLn_yea67O77-h4tVGEKX78bFj_YqTiSpjhTdfAY2941Rsow_gnKiOCzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21170252</pqid></control><display><type>article</type><title>Roads from vaccines to therapies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Smith, Leonard A. ; Jensen, Melody J. ; Montgomery, Vicki A. ; Brown, Douglas R. ; Ahmed, S. Ashrat ; Smith, Theresa J.</creator><creatorcontrib>Smith, Leonard A. ; Jensen, Melody J. ; Montgomery, Vicki A. ; Brown, Douglas R. ; Ahmed, S. Ashrat ; Smith, Theresa J.</creatorcontrib><description>Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society</description><identifier>ISSN: 0885-3185</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.20009</identifier><identifier>PMID: 15027054</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; botulinum ; Botulinum Toxins - chemistry ; Botulinum Toxins - genetics ; Botulinum Toxins - immunology ; Botulism - immunology ; Botulism - prevention &amp; control ; Clostridium botulinum ; Dose-Response Relationship, Immunologic ; Escherichia coli ; Escherichia coli - immunology ; Escherichia coli Proteins - immunology ; Medical sciences ; Mice ; Neurology ; neurotoxins ; Peptide Fragments - immunology ; Pichia pastoris ; Pichinde virus - immunology ; Primates ; therapies ; vaccines ; Vaccines - therapeutic use ; Vaccines, Synthetic</subject><ispartof>Movement disorders, 2004-03, Vol.19 (S8), p.S48-S52</ispartof><rights>Copyright © 2004 Movement Disorder Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2004 Movement Disorder Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</citedby><cites>FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.20009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.20009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15663112$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15027054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Leonard A.</creatorcontrib><creatorcontrib>Jensen, Melody J.</creatorcontrib><creatorcontrib>Montgomery, Vicki A.</creatorcontrib><creatorcontrib>Brown, Douglas R.</creatorcontrib><creatorcontrib>Ahmed, S. Ashrat</creatorcontrib><creatorcontrib>Smith, Theresa J.</creatorcontrib><title>Roads from vaccines to therapies</title><title>Movement disorders</title><addtitle>Mov. Disord</addtitle><description>Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>botulinum</subject><subject>Botulinum Toxins - chemistry</subject><subject>Botulinum Toxins - genetics</subject><subject>Botulinum Toxins - immunology</subject><subject>Botulism - immunology</subject><subject>Botulism - prevention &amp; control</subject><subject>Clostridium botulinum</subject><subject>Dose-Response Relationship, Immunologic</subject><subject>Escherichia coli</subject><subject>Escherichia coli - immunology</subject><subject>Escherichia coli Proteins - immunology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Neurology</subject><subject>neurotoxins</subject><subject>Peptide Fragments - immunology</subject><subject>Pichia pastoris</subject><subject>Pichinde virus - immunology</subject><subject>Primates</subject><subject>therapies</subject><subject>vaccines</subject><subject>Vaccines - therapeutic use</subject><subject>Vaccines, Synthetic</subject><issn>0885-3185</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1PwkAQBuCN0QiiB_-A6UUTD8Wd3e5HjwYVjKgJavC2WbbTWG0p7oLKvxcEPy6e5vLMvJmXkH2gbaCUnVRZaDNKabpBmiA4xJoJtUmaVGsRc9CiQXZCeKYUQIDcJg0QlCkqkiaJBrXNQpT7uorerHPFGEM0raPpE3o7KTDskq3clgH31rNFHi7O7zu9uH_bveyc9mOXMJrGOXMaMsu1VpDwXKNOc2lzlWibMiGkHSHIVAqOSvMsQcmROy4zjpqiyCRvkaPV3YmvX2cYpqYqgsOytGOsZ8EwAEWZYAt4vILO1yF4zM3EF5X1cwPULOswizrMVx0Le7A-OhtVmP3K9f8LcLgGNjhb5t6OXRH-OCk5wDL0ZOXeixLn_yea67O77-h4tVGEKX78bFj_YqTiSpjhTdfAY2941Rsow_gnKiOCzg</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Smith, Leonard A.</creator><creator>Jensen, Melody J.</creator><creator>Montgomery, Vicki A.</creator><creator>Brown, Douglas R.</creator><creator>Ahmed, S. Ashrat</creator><creator>Smith, Theresa J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TK</scope><scope>C1K</scope><scope>H94</scope></search><sort><creationdate>200403</creationdate><title>Roads from vaccines to therapies</title><author>Smith, Leonard A. ; Jensen, Melody J. ; Montgomery, Vicki A. ; Brown, Douglas R. ; Ahmed, S. Ashrat ; Smith, Theresa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4209-f2c81da3887143f8e89f6af748a92556abe169653e783d4e63e3c36d3e80e5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>botulinum</topic><topic>Botulinum Toxins - chemistry</topic><topic>Botulinum Toxins - genetics</topic><topic>Botulinum Toxins - immunology</topic><topic>Botulism - immunology</topic><topic>Botulism - prevention &amp; control</topic><topic>Clostridium botulinum</topic><topic>Dose-Response Relationship, Immunologic</topic><topic>Escherichia coli</topic><topic>Escherichia coli - immunology</topic><topic>Escherichia coli Proteins - immunology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Neurology</topic><topic>neurotoxins</topic><topic>Peptide Fragments - immunology</topic><topic>Pichia pastoris</topic><topic>Pichinde virus - immunology</topic><topic>Primates</topic><topic>therapies</topic><topic>vaccines</topic><topic>Vaccines - therapeutic use</topic><topic>Vaccines, Synthetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Leonard A.</creatorcontrib><creatorcontrib>Jensen, Melody J.</creatorcontrib><creatorcontrib>Montgomery, Vicki A.</creatorcontrib><creatorcontrib>Brown, Douglas R.</creatorcontrib><creatorcontrib>Ahmed, S. Ashrat</creatorcontrib><creatorcontrib>Smith, Theresa J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Leonard A.</au><au>Jensen, Melody J.</au><au>Montgomery, Vicki A.</au><au>Brown, Douglas R.</au><au>Ahmed, S. Ashrat</au><au>Smith, Theresa J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roads from vaccines to therapies</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov. Disord</addtitle><date>2004-03</date><risdate>2004</risdate><volume>19</volume><issue>S8</issue><spage>S48</spage><epage>S52</epage><pages>S48-S52</pages><issn>0885-3185</issn><eissn>1531-8257</eissn><abstract>Over the past decade, we have demonstrated that various recombinant fragments of botulinum neurotoxin are highly immunogenic, stimulating notable levels of protective antibodies in mice, guinea pigs, and nonhuman primates. One of the fragments evaluated, the fragment C, is a potential next‐generation vaccine candidate to replace the current pentavalent botulinum toxoid vaccine. Synthetic genes encoding the carboxyl‐terminal regions (∼50 kDa) of toxin types A, B, C1, E, and F were expressed in Pichia pastoris, and manufacturing processes were developed for producing highly purified vaccines. These vaccines were shown to be safe, highly efficacious, stable, and amenable to high‐level industrial production. Recombinant vaccines are now being produced in accordance with current Good Manufacturing Practices for use in future clinical trials. As our discovery‐based program on vaccine development is diminishing, it is concurrently being replaced with a program focused on developing therapeutic interventions to botulism. Synthetic genes encoding the light chains of botulinum toxin have been expressed in Escherichia coli, and purified. These proteolytically active light chains are being used in high‐throughput assays to screen for inhibitors of its catalytic activity. Other resources developed as part of the vaccine initiative, likewise, are finding utility in the quest to develop therapies for botulism. © 2004 Movement Disorder Society</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15027054</pmid><doi>10.1002/mds.20009</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-3185
ispartof Movement disorders, 2004-03, Vol.19 (S8), p.S48-S52
issn 0885-3185
1531-8257
language eng
recordid cdi_proquest_miscellaneous_21170252
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biological and medical sciences
botulinum
Botulinum Toxins - chemistry
Botulinum Toxins - genetics
Botulinum Toxins - immunology
Botulism - immunology
Botulism - prevention & control
Clostridium botulinum
Dose-Response Relationship, Immunologic
Escherichia coli
Escherichia coli - immunology
Escherichia coli Proteins - immunology
Medical sciences
Mice
Neurology
neurotoxins
Peptide Fragments - immunology
Pichia pastoris
Pichinde virus - immunology
Primates
therapies
vaccines
Vaccines - therapeutic use
Vaccines, Synthetic
title Roads from vaccines to therapies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roads%20from%20vaccines%20to%20therapies&rft.jtitle=Movement%20disorders&rft.au=Smith,%20Leonard%20A.&rft.date=2004-03&rft.volume=19&rft.issue=S8&rft.spage=S48&rft.epage=S52&rft.pages=S48-S52&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.20009&rft_dat=%3Cproquest_cross%3E21170252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21170252&rft_id=info:pmid/15027054&rfr_iscdi=true