Translational machine learning for psychiatric neuroimaging
Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically foc...
Gespeichert in:
Veröffentlicht in: | Progress in neuro-psychopharmacology & biological psychiatry 2019-04, Vol.91, p.113-121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | Progress in neuro-psychopharmacology & biological psychiatry |
container_volume | 91 |
creator | Walter, Martin Alizadeh, Sarah Jamalabadi, Hamidreza Lueken, Ulrike Dannlowski, Udo Walter, Henrik Olbrich, Sebastian Colic, Lejla Kambeitz, Joseph Koutsouleris, Nikolaos Hahn, Tim Dwyer, Dominic B. |
description | Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation.
•Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions |
doi_str_mv | 10.1016/j.pnpbp.2018.09.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116851614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0278584618304500</els_id><sourcerecordid>2116851614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEgjH4BUioRy4rdtKmqRAHNPElTeIC5yhNXcjUpSXpkPj3dB9w5GTLfuzXfhm7QEgRUF4v0973VZ9yQJVCmQJmB2yCqlCzjKM8ZBPgY56rTJ6w0xiXAIACxDE7EcBL4KAm7OY1GB9bM7jOmzZZGfvhPCUtmeCdf0-aLiR9_B6rZgjOJp7WoXMr8z42z9hRY9pI5_s4ZW8P96_zp9ni5fF5freYWZGXw6xAyAtjqMCmFFUmMgnGCElKUVY1FvKqoAYNrzMoay65FVirxmKV52BkJcWUXe329qH7XFMc9MpFS21rPHXrqDmiVDlKzEZU7FAbuhgDNboP47XhWyPojWt6qbeu6Y1rGkoN26nLvcC6WlH9N_Nr0wjc7gAa3_xyFHS0jryl2gWyg64796_ADxPVfys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116851614</pqid></control><display><type>article</type><title>Translational machine learning for psychiatric neuroimaging</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Walter, Martin ; Alizadeh, Sarah ; Jamalabadi, Hamidreza ; Lueken, Ulrike ; Dannlowski, Udo ; Walter, Henrik ; Olbrich, Sebastian ; Colic, Lejla ; Kambeitz, Joseph ; Koutsouleris, Nikolaos ; Hahn, Tim ; Dwyer, Dominic B.</creator><creatorcontrib>Walter, Martin ; Alizadeh, Sarah ; Jamalabadi, Hamidreza ; Lueken, Ulrike ; Dannlowski, Udo ; Walter, Henrik ; Olbrich, Sebastian ; Colic, Lejla ; Kambeitz, Joseph ; Koutsouleris, Nikolaos ; Hahn, Tim ; Dwyer, Dominic B.</creatorcontrib><description>Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation.
•Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions</description><identifier>ISSN: 0278-5846</identifier><identifier>EISSN: 1878-4216</identifier><identifier>DOI: 10.1016/j.pnpbp.2018.09.014</identifier><identifier>PMID: 30290208</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Deep learning ; Humans ; Machine learning ; Machine Learning - trends ; Mental Disorders - diagnostic imaging ; Mental Disorders - psychology ; MRI ; Neuroimaging ; Neuroimaging - methods ; Neuroimaging - trends ; Psychiatry - methods ; Psychiatry - trends ; Translational Medical Research - methods ; Translational Medical Research - trends ; Translational psychiatry</subject><ispartof>Progress in neuro-psychopharmacology & biological psychiatry, 2019-04, Vol.91, p.113-121</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</citedby><cites>FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0278584618304500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30290208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Martin</creatorcontrib><creatorcontrib>Alizadeh, Sarah</creatorcontrib><creatorcontrib>Jamalabadi, Hamidreza</creatorcontrib><creatorcontrib>Lueken, Ulrike</creatorcontrib><creatorcontrib>Dannlowski, Udo</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Olbrich, Sebastian</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Kambeitz, Joseph</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Hahn, Tim</creatorcontrib><creatorcontrib>Dwyer, Dominic B.</creatorcontrib><title>Translational machine learning for psychiatric neuroimaging</title><title>Progress in neuro-psychopharmacology & biological psychiatry</title><addtitle>Prog Neuropsychopharmacol Biol Psychiatry</addtitle><description>Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation.
•Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions</description><subject>Deep learning</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Machine Learning - trends</subject><subject>Mental Disorders - diagnostic imaging</subject><subject>Mental Disorders - psychology</subject><subject>MRI</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neuroimaging - trends</subject><subject>Psychiatry - methods</subject><subject>Psychiatry - trends</subject><subject>Translational Medical Research - methods</subject><subject>Translational Medical Research - trends</subject><subject>Translational psychiatry</subject><issn>0278-5846</issn><issn>1878-4216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEgjH4BUioRy4rdtKmqRAHNPElTeIC5yhNXcjUpSXpkPj3dB9w5GTLfuzXfhm7QEgRUF4v0973VZ9yQJVCmQJmB2yCqlCzjKM8ZBPgY56rTJ6w0xiXAIACxDE7EcBL4KAm7OY1GB9bM7jOmzZZGfvhPCUtmeCdf0-aLiR9_B6rZgjOJp7WoXMr8z42z9hRY9pI5_s4ZW8P96_zp9ni5fF5freYWZGXw6xAyAtjqMCmFFUmMgnGCElKUVY1FvKqoAYNrzMoay65FVirxmKV52BkJcWUXe329qH7XFMc9MpFS21rPHXrqDmiVDlKzEZU7FAbuhgDNboP47XhWyPojWt6qbeu6Y1rGkoN26nLvcC6WlH9N_Nr0wjc7gAa3_xyFHS0jryl2gWyg64796_ADxPVfys</recordid><startdate>20190420</startdate><enddate>20190420</enddate><creator>Walter, Martin</creator><creator>Alizadeh, Sarah</creator><creator>Jamalabadi, Hamidreza</creator><creator>Lueken, Ulrike</creator><creator>Dannlowski, Udo</creator><creator>Walter, Henrik</creator><creator>Olbrich, Sebastian</creator><creator>Colic, Lejla</creator><creator>Kambeitz, Joseph</creator><creator>Koutsouleris, Nikolaos</creator><creator>Hahn, Tim</creator><creator>Dwyer, Dominic B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190420</creationdate><title>Translational machine learning for psychiatric neuroimaging</title><author>Walter, Martin ; Alizadeh, Sarah ; Jamalabadi, Hamidreza ; Lueken, Ulrike ; Dannlowski, Udo ; Walter, Henrik ; Olbrich, Sebastian ; Colic, Lejla ; Kambeitz, Joseph ; Koutsouleris, Nikolaos ; Hahn, Tim ; Dwyer, Dominic B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deep learning</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Machine Learning - trends</topic><topic>Mental Disorders - diagnostic imaging</topic><topic>Mental Disorders - psychology</topic><topic>MRI</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neuroimaging - trends</topic><topic>Psychiatry - methods</topic><topic>Psychiatry - trends</topic><topic>Translational Medical Research - methods</topic><topic>Translational Medical Research - trends</topic><topic>Translational psychiatry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Martin</creatorcontrib><creatorcontrib>Alizadeh, Sarah</creatorcontrib><creatorcontrib>Jamalabadi, Hamidreza</creatorcontrib><creatorcontrib>Lueken, Ulrike</creatorcontrib><creatorcontrib>Dannlowski, Udo</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Olbrich, Sebastian</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Kambeitz, Joseph</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Hahn, Tim</creatorcontrib><creatorcontrib>Dwyer, Dominic B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in neuro-psychopharmacology & biological psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Martin</au><au>Alizadeh, Sarah</au><au>Jamalabadi, Hamidreza</au><au>Lueken, Ulrike</au><au>Dannlowski, Udo</au><au>Walter, Henrik</au><au>Olbrich, Sebastian</au><au>Colic, Lejla</au><au>Kambeitz, Joseph</au><au>Koutsouleris, Nikolaos</au><au>Hahn, Tim</au><au>Dwyer, Dominic B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational machine learning for psychiatric neuroimaging</atitle><jtitle>Progress in neuro-psychopharmacology & biological psychiatry</jtitle><addtitle>Prog Neuropsychopharmacol Biol Psychiatry</addtitle><date>2019-04-20</date><risdate>2019</risdate><volume>91</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>0278-5846</issn><eissn>1878-4216</eissn><abstract>Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation.
•Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>30290208</pmid><doi>10.1016/j.pnpbp.2018.09.014</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-5846 |
ispartof | Progress in neuro-psychopharmacology & biological psychiatry, 2019-04, Vol.91, p.113-121 |
issn | 0278-5846 1878-4216 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116851614 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Deep learning Humans Machine learning Machine Learning - trends Mental Disorders - diagnostic imaging Mental Disorders - psychology MRI Neuroimaging Neuroimaging - methods Neuroimaging - trends Psychiatry - methods Psychiatry - trends Translational Medical Research - methods Translational Medical Research - trends Translational psychiatry |
title | Translational machine learning for psychiatric neuroimaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20machine%20learning%20for%20psychiatric%20neuroimaging&rft.jtitle=Progress%20in%20neuro-psychopharmacology%20&%20biological%20psychiatry&rft.au=Walter,%20Martin&rft.date=2019-04-20&rft.volume=91&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=0278-5846&rft.eissn=1878-4216&rft_id=info:doi/10.1016/j.pnpbp.2018.09.014&rft_dat=%3Cproquest_cross%3E2116851614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116851614&rft_id=info:pmid/30290208&rft_els_id=S0278584618304500&rfr_iscdi=true |