Translational machine learning for psychiatric neuroimaging

Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically foc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neuro-psychopharmacology & biological psychiatry 2019-04, Vol.91, p.113-121
Hauptverfasser: Walter, Martin, Alizadeh, Sarah, Jamalabadi, Hamidreza, Lueken, Ulrike, Dannlowski, Udo, Walter, Henrik, Olbrich, Sebastian, Colic, Lejla, Kambeitz, Joseph, Koutsouleris, Nikolaos, Hahn, Tim, Dwyer, Dominic B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 113
container_title Progress in neuro-psychopharmacology & biological psychiatry
container_volume 91
creator Walter, Martin
Alizadeh, Sarah
Jamalabadi, Hamidreza
Lueken, Ulrike
Dannlowski, Udo
Walter, Henrik
Olbrich, Sebastian
Colic, Lejla
Kambeitz, Joseph
Koutsouleris, Nikolaos
Hahn, Tim
Dwyer, Dominic B.
description Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation. •Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions
doi_str_mv 10.1016/j.pnpbp.2018.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116851614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0278584618304500</els_id><sourcerecordid>2116851614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEgjH4BUioRy4rdtKmqRAHNPElTeIC5yhNXcjUpSXpkPj3dB9w5GTLfuzXfhm7QEgRUF4v0973VZ9yQJVCmQJmB2yCqlCzjKM8ZBPgY56rTJ6w0xiXAIACxDE7EcBL4KAm7OY1GB9bM7jOmzZZGfvhPCUtmeCdf0-aLiR9_B6rZgjOJp7WoXMr8z42z9hRY9pI5_s4ZW8P96_zp9ni5fF5freYWZGXw6xAyAtjqMCmFFUmMgnGCElKUVY1FvKqoAYNrzMoay65FVirxmKV52BkJcWUXe329qH7XFMc9MpFS21rPHXrqDmiVDlKzEZU7FAbuhgDNboP47XhWyPojWt6qbeu6Y1rGkoN26nLvcC6WlH9N_Nr0wjc7gAa3_xyFHS0jryl2gWyg64796_ADxPVfys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116851614</pqid></control><display><type>article</type><title>Translational machine learning for psychiatric neuroimaging</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Walter, Martin ; Alizadeh, Sarah ; Jamalabadi, Hamidreza ; Lueken, Ulrike ; Dannlowski, Udo ; Walter, Henrik ; Olbrich, Sebastian ; Colic, Lejla ; Kambeitz, Joseph ; Koutsouleris, Nikolaos ; Hahn, Tim ; Dwyer, Dominic B.</creator><creatorcontrib>Walter, Martin ; Alizadeh, Sarah ; Jamalabadi, Hamidreza ; Lueken, Ulrike ; Dannlowski, Udo ; Walter, Henrik ; Olbrich, Sebastian ; Colic, Lejla ; Kambeitz, Joseph ; Koutsouleris, Nikolaos ; Hahn, Tim ; Dwyer, Dominic B.</creatorcontrib><description>Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation. •Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions</description><identifier>ISSN: 0278-5846</identifier><identifier>EISSN: 1878-4216</identifier><identifier>DOI: 10.1016/j.pnpbp.2018.09.014</identifier><identifier>PMID: 30290208</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Deep learning ; Humans ; Machine learning ; Machine Learning - trends ; Mental Disorders - diagnostic imaging ; Mental Disorders - psychology ; MRI ; Neuroimaging ; Neuroimaging - methods ; Neuroimaging - trends ; Psychiatry - methods ; Psychiatry - trends ; Translational Medical Research - methods ; Translational Medical Research - trends ; Translational psychiatry</subject><ispartof>Progress in neuro-psychopharmacology &amp; biological psychiatry, 2019-04, Vol.91, p.113-121</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</citedby><cites>FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0278584618304500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30290208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Martin</creatorcontrib><creatorcontrib>Alizadeh, Sarah</creatorcontrib><creatorcontrib>Jamalabadi, Hamidreza</creatorcontrib><creatorcontrib>Lueken, Ulrike</creatorcontrib><creatorcontrib>Dannlowski, Udo</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Olbrich, Sebastian</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Kambeitz, Joseph</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Hahn, Tim</creatorcontrib><creatorcontrib>Dwyer, Dominic B.</creatorcontrib><title>Translational machine learning for psychiatric neuroimaging</title><title>Progress in neuro-psychopharmacology &amp; biological psychiatry</title><addtitle>Prog Neuropsychopharmacol Biol Psychiatry</addtitle><description>Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation. •Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions</description><subject>Deep learning</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Machine Learning - trends</subject><subject>Mental Disorders - diagnostic imaging</subject><subject>Mental Disorders - psychology</subject><subject>MRI</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neuroimaging - trends</subject><subject>Psychiatry - methods</subject><subject>Psychiatry - trends</subject><subject>Translational Medical Research - methods</subject><subject>Translational Medical Research - trends</subject><subject>Translational psychiatry</subject><issn>0278-5846</issn><issn>1878-4216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEgjH4BUioRy4rdtKmqRAHNPElTeIC5yhNXcjUpSXpkPj3dB9w5GTLfuzXfhm7QEgRUF4v0973VZ9yQJVCmQJmB2yCqlCzjKM8ZBPgY56rTJ6w0xiXAIACxDE7EcBL4KAm7OY1GB9bM7jOmzZZGfvhPCUtmeCdf0-aLiR9_B6rZgjOJp7WoXMr8z42z9hRY9pI5_s4ZW8P96_zp9ni5fF5freYWZGXw6xAyAtjqMCmFFUmMgnGCElKUVY1FvKqoAYNrzMoay65FVirxmKV52BkJcWUXe329qH7XFMc9MpFS21rPHXrqDmiVDlKzEZU7FAbuhgDNboP47XhWyPojWt6qbeu6Y1rGkoN26nLvcC6WlH9N_Nr0wjc7gAa3_xyFHS0jryl2gWyg64796_ADxPVfys</recordid><startdate>20190420</startdate><enddate>20190420</enddate><creator>Walter, Martin</creator><creator>Alizadeh, Sarah</creator><creator>Jamalabadi, Hamidreza</creator><creator>Lueken, Ulrike</creator><creator>Dannlowski, Udo</creator><creator>Walter, Henrik</creator><creator>Olbrich, Sebastian</creator><creator>Colic, Lejla</creator><creator>Kambeitz, Joseph</creator><creator>Koutsouleris, Nikolaos</creator><creator>Hahn, Tim</creator><creator>Dwyer, Dominic B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190420</creationdate><title>Translational machine learning for psychiatric neuroimaging</title><author>Walter, Martin ; Alizadeh, Sarah ; Jamalabadi, Hamidreza ; Lueken, Ulrike ; Dannlowski, Udo ; Walter, Henrik ; Olbrich, Sebastian ; Colic, Lejla ; Kambeitz, Joseph ; Koutsouleris, Nikolaos ; Hahn, Tim ; Dwyer, Dominic B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-71057aae71f93b43460aa36e88e4bfc05b7ef1a2d409d262c31d8fc1b550a6b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deep learning</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Machine Learning - trends</topic><topic>Mental Disorders - diagnostic imaging</topic><topic>Mental Disorders - psychology</topic><topic>MRI</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neuroimaging - trends</topic><topic>Psychiatry - methods</topic><topic>Psychiatry - trends</topic><topic>Translational Medical Research - methods</topic><topic>Translational Medical Research - trends</topic><topic>Translational psychiatry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Martin</creatorcontrib><creatorcontrib>Alizadeh, Sarah</creatorcontrib><creatorcontrib>Jamalabadi, Hamidreza</creatorcontrib><creatorcontrib>Lueken, Ulrike</creatorcontrib><creatorcontrib>Dannlowski, Udo</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Olbrich, Sebastian</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Kambeitz, Joseph</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Hahn, Tim</creatorcontrib><creatorcontrib>Dwyer, Dominic B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in neuro-psychopharmacology &amp; biological psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Martin</au><au>Alizadeh, Sarah</au><au>Jamalabadi, Hamidreza</au><au>Lueken, Ulrike</au><au>Dannlowski, Udo</au><au>Walter, Henrik</au><au>Olbrich, Sebastian</au><au>Colic, Lejla</au><au>Kambeitz, Joseph</au><au>Koutsouleris, Nikolaos</au><au>Hahn, Tim</au><au>Dwyer, Dominic B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational machine learning for psychiatric neuroimaging</atitle><jtitle>Progress in neuro-psychopharmacology &amp; biological psychiatry</jtitle><addtitle>Prog Neuropsychopharmacol Biol Psychiatry</addtitle><date>2019-04-20</date><risdate>2019</risdate><volume>91</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>0278-5846</issn><eissn>1878-4216</eissn><abstract>Despite its initial promise, neuroimaging has not been widely translated into clinical psychiatry to assist in the prediction of diagnoses, prognoses, and optimal therapeutic strategies. Machine learning approaches may enhance the translational potential of neuroimaging because they specifically focus on overcoming biases by optimizing the generalizability of pipelines that measure complex brain patterns to predict targets at a single-subject level. This article introduces some fundamentals of a translational machine learning approach before selectively reviewing literature to-date. Promising initial results are then balanced by the description of limitations that should be considered in order to interpret existing research and maximize the possibility of future translation. Future directions are then presented in order to inspire further research and progress the field towards clinical translation. •Introduces translational machine learning for psychiatric applications•Explains fundamentals of a machine learning approach•Selectively reviews literature to-date•Balances review with major limitations•Includes perspectives on future directions</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>30290208</pmid><doi>10.1016/j.pnpbp.2018.09.014</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-5846
ispartof Progress in neuro-psychopharmacology & biological psychiatry, 2019-04, Vol.91, p.113-121
issn 0278-5846
1878-4216
language eng
recordid cdi_proquest_miscellaneous_2116851614
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Deep learning
Humans
Machine learning
Machine Learning - trends
Mental Disorders - diagnostic imaging
Mental Disorders - psychology
MRI
Neuroimaging
Neuroimaging - methods
Neuroimaging - trends
Psychiatry - methods
Psychiatry - trends
Translational Medical Research - methods
Translational Medical Research - trends
Translational psychiatry
title Translational machine learning for psychiatric neuroimaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20machine%20learning%20for%20psychiatric%20neuroimaging&rft.jtitle=Progress%20in%20neuro-psychopharmacology%20&%20biological%20psychiatry&rft.au=Walter,%20Martin&rft.date=2019-04-20&rft.volume=91&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=0278-5846&rft.eissn=1878-4216&rft_id=info:doi/10.1016/j.pnpbp.2018.09.014&rft_dat=%3Cproquest_cross%3E2116851614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116851614&rft_id=info:pmid/30290208&rft_els_id=S0278584618304500&rfr_iscdi=true