Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications
We introduce solution-based, room temperature- and atmospheric pressure-processed silver nanocrystal (Ag NC)-based electrical circuits and interconnects for radio frequency (RF)/microwave frequency applications. We chemically designed the surface and interface states of Ag NC thin films to achieve h...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-10, Vol.10 (43), p.37643-37650 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37650 |
---|---|
container_issue | 43 |
container_start_page | 37643 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Oh, Hanju Lee, Seung-Wook Kim, Minsoo Lee, Woo Seok Seong, Mingi Joh, Hyungmok Allen, Mark G May, Gary S Bakir, Muhannad S Oh, Soong Ju |
description | We introduce solution-based, room temperature- and atmospheric pressure-processed silver nanocrystal (Ag NC)-based electrical circuits and interconnects for radio frequency (RF)/microwave frequency applications. We chemically designed the surface and interface states of Ag NC thin films to achieve high stability, dc and ac conductivity, and minimized RF loss through stepwise ligand exchange, shell coating, and surface cleaning. The chemical and structural properties of the circuits and interconnects affect the high-frequency electrical performance of Ag NC thin films, as confirmed by high-frequency electromagnetic field simulations. An all solution-based process is developed to build coplanar structures, in which Ag NC thin films are positioned at both sides of the substrates. In addition, we fabricated flexible transmission lines and broadband electrical circuits for resistors, interdigitated capacitors, spiral and omega-shaped inductors, and patch antennas with maximum inductance and capacitance values of 3 nH and 2.5 pF at frequencies up to 20 GHz. We believe that our approach will lead to a cost-effective realization of RF circuits and devices in which sensing and wireless communication capabilities are combined for internet-of-things applications. |
doi_str_mv | 10.1021/acsami.8b12005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116850157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116850157</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-a52786d19d0ac9c81cc2ca4d8d880aa9c2a055eab85219bf64a868f1a862bcee3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMiKPCCnFduLUGatAAakCicLEEF0cp7hK4mAnSPn3GKV0Y7m74XtP7x5Cl5TMKWH0FqSDWs9FThkh_AhNaRJFgWCcHR_uKJqgM-d2hMQhI_wUTULChEgWfIo-7pTT20Y3W7zpbQlS4fRT1dp1dsCmxBtdfSuLn6Ex0g6ug8rh0lj8CoU2eGXVV68aOeBUW9nrDi_bttISOm0ad45OSs-ri_2eoffV_Vv6GKxfHp7S5TqAMCRdAJwtRFzQpCAgEymolExCVIhCCAKQSAaEcwW54IwmeRlHIGJRUj9ZLpUKZ-h69G2t8XFcl_n8UlUVNMr0LmOUxoITyhcenY-otMY5q8qstboGO2SUZL-FZmOh2b5QL7jae_d5rYoD_tegB25GwAuznelt41_9z-0H2KaBsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116850157</pqid></control><display><type>article</type><title>Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications</title><source>ACS Publications</source><creator>Oh, Hanju ; Lee, Seung-Wook ; Kim, Minsoo ; Lee, Woo Seok ; Seong, Mingi ; Joh, Hyungmok ; Allen, Mark G ; May, Gary S ; Bakir, Muhannad S ; Oh, Soong Ju</creator><creatorcontrib>Oh, Hanju ; Lee, Seung-Wook ; Kim, Minsoo ; Lee, Woo Seok ; Seong, Mingi ; Joh, Hyungmok ; Allen, Mark G ; May, Gary S ; Bakir, Muhannad S ; Oh, Soong Ju</creatorcontrib><description>We introduce solution-based, room temperature- and atmospheric pressure-processed silver nanocrystal (Ag NC)-based electrical circuits and interconnects for radio frequency (RF)/microwave frequency applications. We chemically designed the surface and interface states of Ag NC thin films to achieve high stability, dc and ac conductivity, and minimized RF loss through stepwise ligand exchange, shell coating, and surface cleaning. The chemical and structural properties of the circuits and interconnects affect the high-frequency electrical performance of Ag NC thin films, as confirmed by high-frequency electromagnetic field simulations. An all solution-based process is developed to build coplanar structures, in which Ag NC thin films are positioned at both sides of the substrates. In addition, we fabricated flexible transmission lines and broadband electrical circuits for resistors, interdigitated capacitors, spiral and omega-shaped inductors, and patch antennas with maximum inductance and capacitance values of 3 nH and 2.5 pF at frequencies up to 20 GHz. We believe that our approach will lead to a cost-effective realization of RF circuits and devices in which sensing and wireless communication capabilities are combined for internet-of-things applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b12005</identifier><identifier>PMID: 30288975</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-10, Vol.10 (43), p.37643-37650</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-a52786d19d0ac9c81cc2ca4d8d880aa9c2a055eab85219bf64a868f1a862bcee3</citedby><cites>FETCH-LOGICAL-a330t-a52786d19d0ac9c81cc2ca4d8d880aa9c2a055eab85219bf64a868f1a862bcee3</cites><orcidid>0000-0003-1434-8844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b12005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b12005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30288975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Hanju</creatorcontrib><creatorcontrib>Lee, Seung-Wook</creatorcontrib><creatorcontrib>Kim, Minsoo</creatorcontrib><creatorcontrib>Lee, Woo Seok</creatorcontrib><creatorcontrib>Seong, Mingi</creatorcontrib><creatorcontrib>Joh, Hyungmok</creatorcontrib><creatorcontrib>Allen, Mark G</creatorcontrib><creatorcontrib>May, Gary S</creatorcontrib><creatorcontrib>Bakir, Muhannad S</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><title>Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We introduce solution-based, room temperature- and atmospheric pressure-processed silver nanocrystal (Ag NC)-based electrical circuits and interconnects for radio frequency (RF)/microwave frequency applications. We chemically designed the surface and interface states of Ag NC thin films to achieve high stability, dc and ac conductivity, and minimized RF loss through stepwise ligand exchange, shell coating, and surface cleaning. The chemical and structural properties of the circuits and interconnects affect the high-frequency electrical performance of Ag NC thin films, as confirmed by high-frequency electromagnetic field simulations. An all solution-based process is developed to build coplanar structures, in which Ag NC thin films are positioned at both sides of the substrates. In addition, we fabricated flexible transmission lines and broadband electrical circuits for resistors, interdigitated capacitors, spiral and omega-shaped inductors, and patch antennas with maximum inductance and capacitance values of 3 nH and 2.5 pF at frequencies up to 20 GHz. We believe that our approach will lead to a cost-effective realization of RF circuits and devices in which sensing and wireless communication capabilities are combined for internet-of-things applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwMiKPCCnFduLUGatAAakCicLEEF0cp7hK4mAnSPn3GKV0Y7m74XtP7x5Cl5TMKWH0FqSDWs9FThkh_AhNaRJFgWCcHR_uKJqgM-d2hMQhI_wUTULChEgWfIo-7pTT20Y3W7zpbQlS4fRT1dp1dsCmxBtdfSuLn6Ex0g6ug8rh0lj8CoU2eGXVV68aOeBUW9nrDi_bttISOm0ad45OSs-ri_2eoffV_Vv6GKxfHp7S5TqAMCRdAJwtRFzQpCAgEymolExCVIhCCAKQSAaEcwW54IwmeRlHIGJRUj9ZLpUKZ-h69G2t8XFcl_n8UlUVNMr0LmOUxoITyhcenY-otMY5q8qstboGO2SUZL-FZmOh2b5QL7jae_d5rYoD_tegB25GwAuznelt41_9z-0H2KaBsA</recordid><startdate>20181031</startdate><enddate>20181031</enddate><creator>Oh, Hanju</creator><creator>Lee, Seung-Wook</creator><creator>Kim, Minsoo</creator><creator>Lee, Woo Seok</creator><creator>Seong, Mingi</creator><creator>Joh, Hyungmok</creator><creator>Allen, Mark G</creator><creator>May, Gary S</creator><creator>Bakir, Muhannad S</creator><creator>Oh, Soong Ju</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1434-8844</orcidid></search><sort><creationdate>20181031</creationdate><title>Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications</title><author>Oh, Hanju ; Lee, Seung-Wook ; Kim, Minsoo ; Lee, Woo Seok ; Seong, Mingi ; Joh, Hyungmok ; Allen, Mark G ; May, Gary S ; Bakir, Muhannad S ; Oh, Soong Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-a52786d19d0ac9c81cc2ca4d8d880aa9c2a055eab85219bf64a868f1a862bcee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Hanju</creatorcontrib><creatorcontrib>Lee, Seung-Wook</creatorcontrib><creatorcontrib>Kim, Minsoo</creatorcontrib><creatorcontrib>Lee, Woo Seok</creatorcontrib><creatorcontrib>Seong, Mingi</creatorcontrib><creatorcontrib>Joh, Hyungmok</creatorcontrib><creatorcontrib>Allen, Mark G</creatorcontrib><creatorcontrib>May, Gary S</creatorcontrib><creatorcontrib>Bakir, Muhannad S</creatorcontrib><creatorcontrib>Oh, Soong Ju</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Hanju</au><au>Lee, Seung-Wook</au><au>Kim, Minsoo</au><au>Lee, Woo Seok</au><au>Seong, Mingi</au><au>Joh, Hyungmok</au><au>Allen, Mark G</au><au>May, Gary S</au><au>Bakir, Muhannad S</au><au>Oh, Soong Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-10-31</date><risdate>2018</risdate><volume>10</volume><issue>43</issue><spage>37643</spage><epage>37650</epage><pages>37643-37650</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We introduce solution-based, room temperature- and atmospheric pressure-processed silver nanocrystal (Ag NC)-based electrical circuits and interconnects for radio frequency (RF)/microwave frequency applications. We chemically designed the surface and interface states of Ag NC thin films to achieve high stability, dc and ac conductivity, and minimized RF loss through stepwise ligand exchange, shell coating, and surface cleaning. The chemical and structural properties of the circuits and interconnects affect the high-frequency electrical performance of Ag NC thin films, as confirmed by high-frequency electromagnetic field simulations. An all solution-based process is developed to build coplanar structures, in which Ag NC thin films are positioned at both sides of the substrates. In addition, we fabricated flexible transmission lines and broadband electrical circuits for resistors, interdigitated capacitors, spiral and omega-shaped inductors, and patch antennas with maximum inductance and capacitance values of 3 nH and 2.5 pF at frequencies up to 20 GHz. We believe that our approach will lead to a cost-effective realization of RF circuits and devices in which sensing and wireless communication capabilities are combined for internet-of-things applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30288975</pmid><doi>10.1021/acsami.8b12005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1434-8844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-10, Vol.10 (43), p.37643-37650 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116850157 |
source | ACS Publications |
title | Designing Surface Chemistry of Silver Nanocrystals for Radio Frequency Circuit Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Surface%20Chemistry%20of%20Silver%20Nanocrystals%20for%20Radio%20Frequency%20Circuit%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Oh,%20Hanju&rft.date=2018-10-31&rft.volume=10&rft.issue=43&rft.spage=37643&rft.epage=37650&rft.pages=37643-37650&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b12005&rft_dat=%3Cproquest_cross%3E2116850157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116850157&rft_id=info:pmid/30288975&rfr_iscdi=true |