Biphasic-Scanning Ion Conductance Microscopy
A concentration gradient driven imaging mechanism is described for scanning ion conductance microscopy (SICM). Two different solution phases, one filling a double-barrel pipet and one in the bath, are used to afford probe control and imaging under nonstandard SICM conditions. Under these conditions,...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-10, Vol.90 (20), p.11797-11801 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11801 |
---|---|
container_issue | 20 |
container_start_page | 11797 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Choi, Myunghoon Baker, Lane A |
description | A concentration gradient driven imaging mechanism is described for scanning ion conductance microscopy (SICM). Two different solution phases, one filling a double-barrel pipet and one in the bath, are used to afford probe control and imaging under nonstandard SICM conditions. Under these conditions, solutions with no added electrolyte can be utilized as the bath solution. Further, both positive and negative feedback modes are exhibited as the probe approaches the surface. We term this method biphasic-SICM (BP-SICM). Technical details of implementing BP-SICM and operational principles are described herein. |
doi_str_mv | 10.1021/acs.analchem.8b03660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116848358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125760876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-45bc9c1024ceb1ee80d699e7dd1c1600b58da58f4972d60f1ead85d17b8fe8fb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxCqxMJAyp2TOM4IFR-VihiA2fJXaKrECXEz9N_jqC0DA9Mtz_ve3UPIJcIMgeKd1H4mnaz0ytYzriBmDI7IGFMKEeOcHpMxAMQRzQBG5Mz7NQAiIDsloxhonNCcjsntQ9mupC919K6lc6X7mi4aN503zvR6I52209dSd43XTbs9JyeFrLy92M8J-Xx6_Ji_RMu358X8fhnJJMs3UZIqnetwZKKtQms5GJbnNjMGNTIAlXIjU14keUYNgwKtNDw1mCleWF6oeEJudr1t13z31m9EXXptq0o62_ReUETGEx6nPKDXf9B103dBy0DRNGPAMxaoZEcNn_jOFqLtylp2W4EgBpsi2BQHm2JvM8Su9uW9qq35DR30BQB2wBD_Xfxv5w-5MoJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125760876</pqid></control><display><type>article</type><title>Biphasic-Scanning Ion Conductance Microscopy</title><source>ACS Publications</source><creator>Choi, Myunghoon ; Baker, Lane A</creator><creatorcontrib>Choi, Myunghoon ; Baker, Lane A</creatorcontrib><description>A concentration gradient driven imaging mechanism is described for scanning ion conductance microscopy (SICM). Two different solution phases, one filling a double-barrel pipet and one in the bath, are used to afford probe control and imaging under nonstandard SICM conditions. Under these conditions, solutions with no added electrolyte can be utilized as the bath solution. Further, both positive and negative feedback modes are exhibited as the probe approaches the surface. We term this method biphasic-SICM (BP-SICM). Technical details of implementing BP-SICM and operational principles are described herein.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b03660</identifier><identifier>PMID: 30234292</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Concentration gradient ; Conductance ; Electrolytes ; Microscopy ; Negative feedback ; Scanning</subject><ispartof>Analytical chemistry (Washington), 2018-10, Vol.90 (20), p.11797-11801</ispartof><rights>Copyright American Chemical Society Oct 16, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-45bc9c1024ceb1ee80d699e7dd1c1600b58da58f4972d60f1ead85d17b8fe8fb3</citedby><cites>FETCH-LOGICAL-a479t-45bc9c1024ceb1ee80d699e7dd1c1600b58da58f4972d60f1ead85d17b8fe8fb3</cites><orcidid>0000-0001-5127-507X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b03660$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b03660$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30234292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Myunghoon</creatorcontrib><creatorcontrib>Baker, Lane A</creatorcontrib><title>Biphasic-Scanning Ion Conductance Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A concentration gradient driven imaging mechanism is described for scanning ion conductance microscopy (SICM). Two different solution phases, one filling a double-barrel pipet and one in the bath, are used to afford probe control and imaging under nonstandard SICM conditions. Under these conditions, solutions with no added electrolyte can be utilized as the bath solution. Further, both positive and negative feedback modes are exhibited as the probe approaches the surface. We term this method biphasic-SICM (BP-SICM). Technical details of implementing BP-SICM and operational principles are described herein.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Concentration gradient</subject><subject>Conductance</subject><subject>Electrolytes</subject><subject>Microscopy</subject><subject>Negative feedback</subject><subject>Scanning</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwDxCqxMJAyp2TOM4IFR-VihiA2fJXaKrECXEz9N_jqC0DA9Mtz_ve3UPIJcIMgeKd1H4mnaz0ytYzriBmDI7IGFMKEeOcHpMxAMQRzQBG5Mz7NQAiIDsloxhonNCcjsntQ9mupC919K6lc6X7mi4aN503zvR6I52209dSd43XTbs9JyeFrLy92M8J-Xx6_Ji_RMu358X8fhnJJMs3UZIqnetwZKKtQms5GJbnNjMGNTIAlXIjU14keUYNgwKtNDw1mCleWF6oeEJudr1t13z31m9EXXptq0o62_ReUETGEx6nPKDXf9B103dBy0DRNGPAMxaoZEcNn_jOFqLtylp2W4EgBpsi2BQHm2JvM8Su9uW9qq35DR30BQB2wBD_Xfxv5w-5MoJ8</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Choi, Myunghoon</creator><creator>Baker, Lane A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5127-507X</orcidid></search><sort><creationdate>20181016</creationdate><title>Biphasic-Scanning Ion Conductance Microscopy</title><author>Choi, Myunghoon ; Baker, Lane A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-45bc9c1024ceb1ee80d699e7dd1c1600b58da58f4972d60f1ead85d17b8fe8fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Concentration gradient</topic><topic>Conductance</topic><topic>Electrolytes</topic><topic>Microscopy</topic><topic>Negative feedback</topic><topic>Scanning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Myunghoon</creatorcontrib><creatorcontrib>Baker, Lane A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Myunghoon</au><au>Baker, Lane A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphasic-Scanning Ion Conductance Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-10-16</date><risdate>2018</risdate><volume>90</volume><issue>20</issue><spage>11797</spage><epage>11801</epage><pages>11797-11801</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>A concentration gradient driven imaging mechanism is described for scanning ion conductance microscopy (SICM). Two different solution phases, one filling a double-barrel pipet and one in the bath, are used to afford probe control and imaging under nonstandard SICM conditions. Under these conditions, solutions with no added electrolyte can be utilized as the bath solution. Further, both positive and negative feedback modes are exhibited as the probe approaches the surface. We term this method biphasic-SICM (BP-SICM). Technical details of implementing BP-SICM and operational principles are described herein.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30234292</pmid><doi>10.1021/acs.analchem.8b03660</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5127-507X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-10, Vol.90 (20), p.11797-11801 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116848358 |
source | ACS Publications |
subjects | Analytical chemistry Chemistry Concentration gradient Conductance Electrolytes Microscopy Negative feedback Scanning |
title | Biphasic-Scanning Ion Conductance Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphasic-Scanning%20Ion%20Conductance%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Choi,%20Myunghoon&rft.date=2018-10-16&rft.volume=90&rft.issue=20&rft.spage=11797&rft.epage=11801&rft.pages=11797-11801&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b03660&rft_dat=%3Cproquest_cross%3E2125760876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125760876&rft_id=info:pmid/30234292&rfr_iscdi=true |