Structural basis of the nucleosome transition during RNA polymerase II passage
Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superheli...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-11, Vol.362 (6414), p.595-598 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 6414 |
container_start_page | 595 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 362 |
creator | Kujirai, Tomoya Ehara, Haruhiko Fujino, Yuka Shirouzu, Mikako Sekine, Shun-Ichi Kurumizaka, Hitoshi |
description | Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation. |
doi_str_mv | 10.1126/science.aau9904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116848068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128107810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxpz3Y-nLFCfFSqisTHHF1tp6RK4mDHQ_89QQ0MTCfdPe-r00PINYM5YzxdeFWZVpk5YshziE_IlEGeRDkHcUqmACKNJGTJhFx4vwcYbrk4JxMBXGYpy6Zk89a7oPrgsKZb9JWntqT9p6FtULWx3jaG9g5bX_WVbakOrmp39HWzpJ2tD41x6A1drWiH3uPOXJKzEmtvrsY5Ix-PD-_3z9H65Wl1v1xHKha8jzLUWSI04hYSnosUgAtVSii1zjkalvJUM61ipROOsYxBJVxqhcMGMskzMSN3x97O2a9gfF80lVemrrE1NviCM5bKWEIqB_T2H7q3wbXDdwPFJRsKGQzU4kgpZ713piw6VzXoDgWD4kd1MaouRtVD4mbsDdvG6D_-1634BlzVe9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128107810</pqid></control><display><type>article</type><title>Structural basis of the nucleosome transition during RNA polymerase II passage</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Kujirai, Tomoya ; Ehara, Haruhiko ; Fujino, Yuka ; Shirouzu, Mikako ; Sekine, Shun-Ichi ; Kurumizaka, Hitoshi</creator><creatorcontrib>Kujirai, Tomoya ; Ehara, Haruhiko ; Fujino, Yuka ; Shirouzu, Mikako ; Sekine, Shun-Ichi ; Kurumizaka, Hitoshi</creatorcontrib><description>Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau9904</identifier><identifier>PMID: 30287617</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Chromatin ; Chromatin - genetics ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA-directed RNA polymerase ; Electron microscopy ; Epigenesis, Genetic ; Eukaryotes ; Gene regulation ; Histones - chemistry ; Histones - metabolism ; Humans ; Microscopy ; Nucleosomes ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Nucleosomes - ultrastructure ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; RNA Polymerase II - ultrastructure ; Superhelical DNA ; Transcription ; Transcription, Genetic</subject><ispartof>Science (American Association for the Advancement of Science), 2018-11, Vol.362 (6414), p.595-598</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</citedby><cites>FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</cites><orcidid>0000-0001-5547-9598 ; 0000-0001-7412-3722 ; 0000-0001-8174-8704 ; 0000-0002-7997-2149 ; 0000-0002-7420-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30287617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Ehara, Haruhiko</creatorcontrib><creatorcontrib>Fujino, Yuka</creatorcontrib><creatorcontrib>Shirouzu, Mikako</creatorcontrib><creatorcontrib>Sekine, Shun-Ichi</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><title>Structural basis of the nucleosome transition during RNA polymerase II passage</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.</description><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Electron microscopy</subject><subject>Epigenesis, Genetic</subject><subject>Eukaryotes</subject><subject>Gene regulation</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Microscopy</subject><subject>Nucleosomes</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleosomes - ultrastructure</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA Polymerase II - ultrastructure</subject><subject>Superhelical DNA</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxpz3Y-nLFCfFSqisTHHF1tp6RK4mDHQ_89QQ0MTCfdPe-r00PINYM5YzxdeFWZVpk5YshziE_IlEGeRDkHcUqmACKNJGTJhFx4vwcYbrk4JxMBXGYpy6Zk89a7oPrgsKZb9JWntqT9p6FtULWx3jaG9g5bX_WVbakOrmp39HWzpJ2tD41x6A1drWiH3uPOXJKzEmtvrsY5Ix-PD-_3z9H65Wl1v1xHKha8jzLUWSI04hYSnosUgAtVSii1zjkalvJUM61ipROOsYxBJVxqhcMGMskzMSN3x97O2a9gfF80lVemrrE1NviCM5bKWEIqB_T2H7q3wbXDdwPFJRsKGQzU4kgpZ713piw6VzXoDgWD4kd1MaouRtVD4mbsDdvG6D_-1634BlzVe9I</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Kujirai, Tomoya</creator><creator>Ehara, Haruhiko</creator><creator>Fujino, Yuka</creator><creator>Shirouzu, Mikako</creator><creator>Sekine, Shun-Ichi</creator><creator>Kurumizaka, Hitoshi</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5547-9598</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0001-8174-8704</orcidid><orcidid>https://orcid.org/0000-0002-7997-2149</orcidid><orcidid>https://orcid.org/0000-0002-7420-145X</orcidid></search><sort><creationdate>20181102</creationdate><title>Structural basis of the nucleosome transition during RNA polymerase II passage</title><author>Kujirai, Tomoya ; Ehara, Haruhiko ; Fujino, Yuka ; Shirouzu, Mikako ; Sekine, Shun-Ichi ; Kurumizaka, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Electron microscopy</topic><topic>Epigenesis, Genetic</topic><topic>Eukaryotes</topic><topic>Gene regulation</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Microscopy</topic><topic>Nucleosomes</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleosomes - ultrastructure</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA Polymerase II - ultrastructure</topic><topic>Superhelical DNA</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Ehara, Haruhiko</creatorcontrib><creatorcontrib>Fujino, Yuka</creatorcontrib><creatorcontrib>Shirouzu, Mikako</creatorcontrib><creatorcontrib>Sekine, Shun-Ichi</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kujirai, Tomoya</au><au>Ehara, Haruhiko</au><au>Fujino, Yuka</au><au>Shirouzu, Mikako</au><au>Sekine, Shun-Ichi</au><au>Kurumizaka, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of the nucleosome transition during RNA polymerase II passage</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>362</volume><issue>6414</issue><spage>595</spage><epage>598</epage><pages>595-598</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30287617</pmid><doi>10.1126/science.aau9904</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5547-9598</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0001-8174-8704</orcidid><orcidid>https://orcid.org/0000-0002-7997-2149</orcidid><orcidid>https://orcid.org/0000-0002-7420-145X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-11, Vol.362 (6414), p.595-598 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116848068 |
source | MEDLINE; American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Chromatin Chromatin - genetics Cryoelectron Microscopy Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA-directed RNA polymerase Electron microscopy Epigenesis, Genetic Eukaryotes Gene regulation Histones - chemistry Histones - metabolism Humans Microscopy Nucleosomes Nucleosomes - chemistry Nucleosomes - metabolism Nucleosomes - ultrastructure Ribonucleic acid RNA RNA polymerase RNA polymerase II RNA Polymerase II - chemistry RNA Polymerase II - metabolism RNA Polymerase II - ultrastructure Superhelical DNA Transcription Transcription, Genetic |
title | Structural basis of the nucleosome transition during RNA polymerase II passage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20the%20nucleosome%20transition%20during%20RNA%20polymerase%20II%20passage&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kujirai,%20Tomoya&rft.date=2018-11-02&rft.volume=362&rft.issue=6414&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau9904&rft_dat=%3Cproquest_cross%3E2128107810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128107810&rft_id=info:pmid/30287617&rfr_iscdi=true |