Structural basis of the nucleosome transition during RNA polymerase II passage

Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superheli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-11, Vol.362 (6414), p.595-598
Hauptverfasser: Kujirai, Tomoya, Ehara, Haruhiko, Fujino, Yuka, Shirouzu, Mikako, Sekine, Shun-Ichi, Kurumizaka, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 6414
container_start_page 595
container_title Science (American Association for the Advancement of Science)
container_volume 362
creator Kujirai, Tomoya
Ehara, Haruhiko
Fujino, Yuka
Shirouzu, Mikako
Sekine, Shun-Ichi
Kurumizaka, Hitoshi
description Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.
doi_str_mv 10.1126/science.aau9904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116848068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128107810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxpz3Y-nLFCfFSqisTHHF1tp6RK4mDHQ_89QQ0MTCfdPe-r00PINYM5YzxdeFWZVpk5YshziE_IlEGeRDkHcUqmACKNJGTJhFx4vwcYbrk4JxMBXGYpy6Zk89a7oPrgsKZb9JWntqT9p6FtULWx3jaG9g5bX_WVbakOrmp39HWzpJ2tD41x6A1drWiH3uPOXJKzEmtvrsY5Ix-PD-_3z9H65Wl1v1xHKha8jzLUWSI04hYSnosUgAtVSii1zjkalvJUM61ipROOsYxBJVxqhcMGMskzMSN3x97O2a9gfF80lVemrrE1NviCM5bKWEIqB_T2H7q3wbXDdwPFJRsKGQzU4kgpZ713piw6VzXoDgWD4kd1MaouRtVD4mbsDdvG6D_-1634BlzVe9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128107810</pqid></control><display><type>article</type><title>Structural basis of the nucleosome transition during RNA polymerase II passage</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Kujirai, Tomoya ; Ehara, Haruhiko ; Fujino, Yuka ; Shirouzu, Mikako ; Sekine, Shun-Ichi ; Kurumizaka, Hitoshi</creator><creatorcontrib>Kujirai, Tomoya ; Ehara, Haruhiko ; Fujino, Yuka ; Shirouzu, Mikako ; Sekine, Shun-Ichi ; Kurumizaka, Hitoshi</creatorcontrib><description>Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau9904</identifier><identifier>PMID: 30287617</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Chromatin ; Chromatin - genetics ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA-directed RNA polymerase ; Electron microscopy ; Epigenesis, Genetic ; Eukaryotes ; Gene regulation ; Histones - chemistry ; Histones - metabolism ; Humans ; Microscopy ; Nucleosomes ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Nucleosomes - ultrastructure ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; RNA Polymerase II - ultrastructure ; Superhelical DNA ; Transcription ; Transcription, Genetic</subject><ispartof>Science (American Association for the Advancement of Science), 2018-11, Vol.362 (6414), p.595-598</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</citedby><cites>FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</cites><orcidid>0000-0001-5547-9598 ; 0000-0001-7412-3722 ; 0000-0001-8174-8704 ; 0000-0002-7997-2149 ; 0000-0002-7420-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30287617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Ehara, Haruhiko</creatorcontrib><creatorcontrib>Fujino, Yuka</creatorcontrib><creatorcontrib>Shirouzu, Mikako</creatorcontrib><creatorcontrib>Sekine, Shun-Ichi</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><title>Structural basis of the nucleosome transition during RNA polymerase II passage</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.</description><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Electron microscopy</subject><subject>Epigenesis, Genetic</subject><subject>Eukaryotes</subject><subject>Gene regulation</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Microscopy</subject><subject>Nucleosomes</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleosomes - ultrastructure</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA Polymerase II - ultrastructure</subject><subject>Superhelical DNA</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxpz3Y-nLFCfFSqisTHHF1tp6RK4mDHQ_89QQ0MTCfdPe-r00PINYM5YzxdeFWZVpk5YshziE_IlEGeRDkHcUqmACKNJGTJhFx4vwcYbrk4JxMBXGYpy6Zk89a7oPrgsKZb9JWntqT9p6FtULWx3jaG9g5bX_WVbakOrmp39HWzpJ2tD41x6A1drWiH3uPOXJKzEmtvrsY5Ix-PD-_3z9H65Wl1v1xHKha8jzLUWSI04hYSnosUgAtVSii1zjkalvJUM61ipROOsYxBJVxqhcMGMskzMSN3x97O2a9gfF80lVemrrE1NviCM5bKWEIqB_T2H7q3wbXDdwPFJRsKGQzU4kgpZ713piw6VzXoDgWD4kd1MaouRtVD4mbsDdvG6D_-1634BlzVe9I</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Kujirai, Tomoya</creator><creator>Ehara, Haruhiko</creator><creator>Fujino, Yuka</creator><creator>Shirouzu, Mikako</creator><creator>Sekine, Shun-Ichi</creator><creator>Kurumizaka, Hitoshi</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5547-9598</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0001-8174-8704</orcidid><orcidid>https://orcid.org/0000-0002-7997-2149</orcidid><orcidid>https://orcid.org/0000-0002-7420-145X</orcidid></search><sort><creationdate>20181102</creationdate><title>Structural basis of the nucleosome transition during RNA polymerase II passage</title><author>Kujirai, Tomoya ; Ehara, Haruhiko ; Fujino, Yuka ; Shirouzu, Mikako ; Sekine, Shun-Ichi ; Kurumizaka, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7ad753daab0529360023cf80fdd92ae1626d1dc4cd52a4840c528dcac4c078273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Electron microscopy</topic><topic>Epigenesis, Genetic</topic><topic>Eukaryotes</topic><topic>Gene regulation</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Microscopy</topic><topic>Nucleosomes</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleosomes - ultrastructure</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA Polymerase II - ultrastructure</topic><topic>Superhelical DNA</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Ehara, Haruhiko</creatorcontrib><creatorcontrib>Fujino, Yuka</creatorcontrib><creatorcontrib>Shirouzu, Mikako</creatorcontrib><creatorcontrib>Sekine, Shun-Ichi</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kujirai, Tomoya</au><au>Ehara, Haruhiko</au><au>Fujino, Yuka</au><au>Shirouzu, Mikako</au><au>Sekine, Shun-Ichi</au><au>Kurumizaka, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of the nucleosome transition during RNA polymerase II passage</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>362</volume><issue>6414</issue><spage>595</spage><epage>598</epage><pages>595-598</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30287617</pmid><doi>10.1126/science.aau9904</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5547-9598</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0001-8174-8704</orcidid><orcidid>https://orcid.org/0000-0002-7997-2149</orcidid><orcidid>https://orcid.org/0000-0002-7420-145X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-11, Vol.362 (6414), p.595-598
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2116848068
source MEDLINE; American Association for the Advancement of Science; Jstor Complete Legacy
subjects Chromatin
Chromatin - genetics
Cryoelectron Microscopy
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - metabolism
DNA-directed RNA polymerase
Electron microscopy
Epigenesis, Genetic
Eukaryotes
Gene regulation
Histones - chemistry
Histones - metabolism
Humans
Microscopy
Nucleosomes
Nucleosomes - chemistry
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Ribonucleic acid
RNA
RNA polymerase
RNA polymerase II
RNA Polymerase II - chemistry
RNA Polymerase II - metabolism
RNA Polymerase II - ultrastructure
Superhelical DNA
Transcription
Transcription, Genetic
title Structural basis of the nucleosome transition during RNA polymerase II passage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20the%20nucleosome%20transition%20during%20RNA%20polymerase%20II%20passage&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kujirai,%20Tomoya&rft.date=2018-11-02&rft.volume=362&rft.issue=6414&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau9904&rft_dat=%3Cproquest_cross%3E2128107810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128107810&rft_id=info:pmid/30287617&rfr_iscdi=true