Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties
•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels cou...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2018-12, Vol.202, p.246-257 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | |
container_start_page | 246 |
container_title | Carbohydrate polymers |
container_volume | 202 |
creator | Zou, Wanjing Chen, Yuxiang Zhang, Xingcai Li, Jianna Sun, Leming Gui, Zifan Du, Bing Chen, Shiguo |
description | •Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored.
Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications. |
doi_str_mv | 10.1016/j.carbpol.2018.08.124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116846544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861718310348</els_id><sourcerecordid>2116846544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</originalsourceid><addsrcrecordid>eNqFkMuO0zAUhi0EYjoDjwDKkgUJx47jpCuEKhiQRmIDa8uXE-LixMF2O-rb49LCFm8sH_2X44-QVxQaClS82zdGRb0G3zCgQwNDQxl_QjZ06Lc1bTl_SjZAOa8HQfsbcpvSHsoRFJ6TmxbYILbbYUOOu1MOJsyryk57rMzkckhqqbRKaKv54LOrF8yPIf6sppON4Qf6VD26PFVqyW52JgbtlH9bGfT-z6xWdsLkjlheJQLNpBZnlK_WGFaM2WF6QZ6Nyid8eb3vyPdPH7_tPtcPX--_7D481IYDy7UZRa9Np9qWjWAER4HCsL5nllMKwsAAI7XYUyqYHjvN7KgB2m1Hse3AQHtH3lxyS_WvA6YsZ5fOi6oFwyFJVpwDFx3nRdpdpOVDKUUc5RrdrOJJUpBn5HIvr8jlGbmEQRbkxff6WnHQM9p_rr-Mi-D9RVDA4dFhlMk4XAxaF9FkaYP7T8VvRRuXjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116846544</pqid></control><display><type>article</type><title>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zou, Wanjing ; Chen, Yuxiang ; Zhang, Xingcai ; Li, Jianna ; Sun, Leming ; Gui, Zifan ; Du, Bing ; Chen, Shiguo</creator><creatorcontrib>Zou, Wanjing ; Chen, Yuxiang ; Zhang, Xingcai ; Li, Jianna ; Sun, Leming ; Gui, Zifan ; Du, Bing ; Chen, Shiguo</creatorcontrib><description>•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored.
Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2018.08.124</identifier><identifier>PMID: 30286998</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylates - chemical synthesis ; Acrylates - chemistry ; Acrylates - pharmacology ; Animals ; Anti microbial ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Cell Adhesion - drug effects ; Cell anti-adhesion ; Cell Survival - drug effects ; Chitosan ; Chitosan - chemistry ; Chitosan - pharmacology ; Cross-Linking Reagents - chemical synthesis ; Cross-Linking Reagents - chemistry ; Cross-Linking Reagents - pharmacology ; Escherichia coli - drug effects ; Hydrogel ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mice ; Microbial Sensitivity Tests ; Molecular Structure ; NIH 3T3 Cells ; Particle Size ; Polymers - chemical synthesis ; Polymers - chemistry ; Polymers - pharmacology ; Staphylococcus aureus - drug effects ; Surface Properties ; Zwitterions</subject><ispartof>Carbohydrate polymers, 2018-12, Vol.202, p.246-257</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</citedby><cites>FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</cites><orcidid>0000-0002-3188-9557 ; 0000-0002-5338-690X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2018.08.124$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30286998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Wanjing</creatorcontrib><creatorcontrib>Chen, Yuxiang</creatorcontrib><creatorcontrib>Zhang, Xingcai</creatorcontrib><creatorcontrib>Li, Jianna</creatorcontrib><creatorcontrib>Sun, Leming</creatorcontrib><creatorcontrib>Gui, Zifan</creatorcontrib><creatorcontrib>Du, Bing</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><title>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored.
Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.</description><subject>Acrylates - chemical synthesis</subject><subject>Acrylates - chemistry</subject><subject>Acrylates - pharmacology</subject><subject>Animals</subject><subject>Anti microbial</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell anti-adhesion</subject><subject>Cell Survival - drug effects</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Cross-Linking Reagents - chemical synthesis</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Hydrogel</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Structure</subject><subject>NIH 3T3 Cells</subject><subject>Particle Size</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Surface Properties</subject><subject>Zwitterions</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMuO0zAUhi0EYjoDjwDKkgUJx47jpCuEKhiQRmIDa8uXE-LixMF2O-rb49LCFm8sH_2X44-QVxQaClS82zdGRb0G3zCgQwNDQxl_QjZ06Lc1bTl_SjZAOa8HQfsbcpvSHsoRFJ6TmxbYILbbYUOOu1MOJsyryk57rMzkckhqqbRKaKv54LOrF8yPIf6sppON4Qf6VD26PFVqyW52JgbtlH9bGfT-z6xWdsLkjlheJQLNpBZnlK_WGFaM2WF6QZ6Nyid8eb3vyPdPH7_tPtcPX--_7D481IYDy7UZRa9Np9qWjWAER4HCsL5nllMKwsAAI7XYUyqYHjvN7KgB2m1Hse3AQHtH3lxyS_WvA6YsZ5fOi6oFwyFJVpwDFx3nRdpdpOVDKUUc5RrdrOJJUpBn5HIvr8jlGbmEQRbkxff6WnHQM9p_rr-Mi-D9RVDA4dFhlMk4XAxaF9FkaYP7T8VvRRuXjQ</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Zou, Wanjing</creator><creator>Chen, Yuxiang</creator><creator>Zhang, Xingcai</creator><creator>Li, Jianna</creator><creator>Sun, Leming</creator><creator>Gui, Zifan</creator><creator>Du, Bing</creator><creator>Chen, Shiguo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3188-9557</orcidid><orcidid>https://orcid.org/0000-0002-5338-690X</orcidid></search><sort><creationdate>20181215</creationdate><title>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</title><author>Zou, Wanjing ; Chen, Yuxiang ; Zhang, Xingcai ; Li, Jianna ; Sun, Leming ; Gui, Zifan ; Du, Bing ; Chen, Shiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acrylates - chemical synthesis</topic><topic>Acrylates - chemistry</topic><topic>Acrylates - pharmacology</topic><topic>Animals</topic><topic>Anti microbial</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell anti-adhesion</topic><topic>Cell Survival - drug effects</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Cross-Linking Reagents - chemical synthesis</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Hydrogel</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Structure</topic><topic>NIH 3T3 Cells</topic><topic>Particle Size</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Surface Properties</topic><topic>Zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Wanjing</creatorcontrib><creatorcontrib>Chen, Yuxiang</creatorcontrib><creatorcontrib>Zhang, Xingcai</creatorcontrib><creatorcontrib>Li, Jianna</creatorcontrib><creatorcontrib>Sun, Leming</creatorcontrib><creatorcontrib>Gui, Zifan</creatorcontrib><creatorcontrib>Du, Bing</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Wanjing</au><au>Chen, Yuxiang</au><au>Zhang, Xingcai</au><au>Li, Jianna</au><au>Sun, Leming</au><au>Gui, Zifan</au><au>Du, Bing</au><au>Chen, Shiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2018-12-15</date><risdate>2018</risdate><volume>202</volume><spage>246</spage><epage>257</epage><pages>246-257</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored.
Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30286998</pmid><doi>10.1016/j.carbpol.2018.08.124</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3188-9557</orcidid><orcidid>https://orcid.org/0000-0002-5338-690X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2018-12, Vol.202, p.246-257 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116846544 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acrylates - chemical synthesis Acrylates - chemistry Acrylates - pharmacology Animals Anti microbial Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Cell Adhesion - drug effects Cell anti-adhesion Cell Survival - drug effects Chitosan Chitosan - chemistry Chitosan - pharmacology Cross-Linking Reagents - chemical synthesis Cross-Linking Reagents - chemistry Cross-Linking Reagents - pharmacology Escherichia coli - drug effects Hydrogel Hydrogels - chemical synthesis Hydrogels - chemistry Hydrogels - pharmacology Mice Microbial Sensitivity Tests Molecular Structure NIH 3T3 Cells Particle Size Polymers - chemical synthesis Polymers - chemistry Polymers - pharmacology Staphylococcus aureus - drug effects Surface Properties Zwitterions |
title | Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytocompatible%20chitosan%20based%20multi-network%20hydrogels%20with%20antimicrobial,%20cell%20anti-adhesive%20and%20mechanical%20properties&rft.jtitle=Carbohydrate%20polymers&rft.au=Zou,%20Wanjing&rft.date=2018-12-15&rft.volume=202&rft.spage=246&rft.epage=257&rft.pages=246-257&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2018.08.124&rft_dat=%3Cproquest_cross%3E2116846544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116846544&rft_id=info:pmid/30286998&rft_els_id=S0144861718310348&rfr_iscdi=true |