Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties

•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2018-12, Vol.202, p.246-257
Hauptverfasser: Zou, Wanjing, Chen, Yuxiang, Zhang, Xingcai, Li, Jianna, Sun, Leming, Gui, Zifan, Du, Bing, Chen, Shiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 246
container_title Carbohydrate polymers
container_volume 202
creator Zou, Wanjing
Chen, Yuxiang
Zhang, Xingcai
Li, Jianna
Sun, Leming
Gui, Zifan
Du, Bing
Chen, Shiguo
description •Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored. Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.
doi_str_mv 10.1016/j.carbpol.2018.08.124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116846544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861718310348</els_id><sourcerecordid>2116846544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</originalsourceid><addsrcrecordid>eNqFkMuO0zAUhi0EYjoDjwDKkgUJx47jpCuEKhiQRmIDa8uXE-LixMF2O-rb49LCFm8sH_2X44-QVxQaClS82zdGRb0G3zCgQwNDQxl_QjZ06Lc1bTl_SjZAOa8HQfsbcpvSHsoRFJ6TmxbYILbbYUOOu1MOJsyryk57rMzkckhqqbRKaKv54LOrF8yPIf6sppON4Qf6VD26PFVqyW52JgbtlH9bGfT-z6xWdsLkjlheJQLNpBZnlK_WGFaM2WF6QZ6Nyid8eb3vyPdPH7_tPtcPX--_7D481IYDy7UZRa9Np9qWjWAER4HCsL5nllMKwsAAI7XYUyqYHjvN7KgB2m1Hse3AQHtH3lxyS_WvA6YsZ5fOi6oFwyFJVpwDFx3nRdpdpOVDKUUc5RrdrOJJUpBn5HIvr8jlGbmEQRbkxff6WnHQM9p_rr-Mi-D9RVDA4dFhlMk4XAxaF9FkaYP7T8VvRRuXjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116846544</pqid></control><display><type>article</type><title>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zou, Wanjing ; Chen, Yuxiang ; Zhang, Xingcai ; Li, Jianna ; Sun, Leming ; Gui, Zifan ; Du, Bing ; Chen, Shiguo</creator><creatorcontrib>Zou, Wanjing ; Chen, Yuxiang ; Zhang, Xingcai ; Li, Jianna ; Sun, Leming ; Gui, Zifan ; Du, Bing ; Chen, Shiguo</creatorcontrib><description>•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored. Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2018.08.124</identifier><identifier>PMID: 30286998</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylates - chemical synthesis ; Acrylates - chemistry ; Acrylates - pharmacology ; Animals ; Anti microbial ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Cell Adhesion - drug effects ; Cell anti-adhesion ; Cell Survival - drug effects ; Chitosan ; Chitosan - chemistry ; Chitosan - pharmacology ; Cross-Linking Reagents - chemical synthesis ; Cross-Linking Reagents - chemistry ; Cross-Linking Reagents - pharmacology ; Escherichia coli - drug effects ; Hydrogel ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mice ; Microbial Sensitivity Tests ; Molecular Structure ; NIH 3T3 Cells ; Particle Size ; Polymers - chemical synthesis ; Polymers - chemistry ; Polymers - pharmacology ; Staphylococcus aureus - drug effects ; Surface Properties ; Zwitterions</subject><ispartof>Carbohydrate polymers, 2018-12, Vol.202, p.246-257</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</citedby><cites>FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</cites><orcidid>0000-0002-3188-9557 ; 0000-0002-5338-690X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2018.08.124$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30286998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Wanjing</creatorcontrib><creatorcontrib>Chen, Yuxiang</creatorcontrib><creatorcontrib>Zhang, Xingcai</creatorcontrib><creatorcontrib>Li, Jianna</creatorcontrib><creatorcontrib>Sun, Leming</creatorcontrib><creatorcontrib>Gui, Zifan</creatorcontrib><creatorcontrib>Du, Bing</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><title>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored. Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.</description><subject>Acrylates - chemical synthesis</subject><subject>Acrylates - chemistry</subject><subject>Acrylates - pharmacology</subject><subject>Animals</subject><subject>Anti microbial</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell anti-adhesion</subject><subject>Cell Survival - drug effects</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Cross-Linking Reagents - chemical synthesis</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Hydrogel</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Molecular Structure</subject><subject>NIH 3T3 Cells</subject><subject>Particle Size</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Surface Properties</subject><subject>Zwitterions</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMuO0zAUhi0EYjoDjwDKkgUJx47jpCuEKhiQRmIDa8uXE-LixMF2O-rb49LCFm8sH_2X44-QVxQaClS82zdGRb0G3zCgQwNDQxl_QjZ06Lc1bTl_SjZAOa8HQfsbcpvSHsoRFJ6TmxbYILbbYUOOu1MOJsyryk57rMzkckhqqbRKaKv54LOrF8yPIf6sppON4Qf6VD26PFVqyW52JgbtlH9bGfT-z6xWdsLkjlheJQLNpBZnlK_WGFaM2WF6QZ6Nyid8eb3vyPdPH7_tPtcPX--_7D481IYDy7UZRa9Np9qWjWAER4HCsL5nllMKwsAAI7XYUyqYHjvN7KgB2m1Hse3AQHtH3lxyS_WvA6YsZ5fOi6oFwyFJVpwDFx3nRdpdpOVDKUUc5RrdrOJJUpBn5HIvr8jlGbmEQRbkxff6WnHQM9p_rr-Mi-D9RVDA4dFhlMk4XAxaF9FkaYP7T8VvRRuXjQ</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Zou, Wanjing</creator><creator>Chen, Yuxiang</creator><creator>Zhang, Xingcai</creator><creator>Li, Jianna</creator><creator>Sun, Leming</creator><creator>Gui, Zifan</creator><creator>Du, Bing</creator><creator>Chen, Shiguo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3188-9557</orcidid><orcidid>https://orcid.org/0000-0002-5338-690X</orcidid></search><sort><creationdate>20181215</creationdate><title>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</title><author>Zou, Wanjing ; Chen, Yuxiang ; Zhang, Xingcai ; Li, Jianna ; Sun, Leming ; Gui, Zifan ; Du, Bing ; Chen, Shiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cf67bc5a332f0c64e6e6c2772d41106c080f1de71162bf5b2dfb003951e350c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acrylates - chemical synthesis</topic><topic>Acrylates - chemistry</topic><topic>Acrylates - pharmacology</topic><topic>Animals</topic><topic>Anti microbial</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell anti-adhesion</topic><topic>Cell Survival - drug effects</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Cross-Linking Reagents - chemical synthesis</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Hydrogel</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Molecular Structure</topic><topic>NIH 3T3 Cells</topic><topic>Particle Size</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Surface Properties</topic><topic>Zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Wanjing</creatorcontrib><creatorcontrib>Chen, Yuxiang</creatorcontrib><creatorcontrib>Zhang, Xingcai</creatorcontrib><creatorcontrib>Li, Jianna</creatorcontrib><creatorcontrib>Sun, Leming</creatorcontrib><creatorcontrib>Gui, Zifan</creatorcontrib><creatorcontrib>Du, Bing</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Wanjing</au><au>Chen, Yuxiang</au><au>Zhang, Xingcai</au><au>Li, Jianna</au><au>Sun, Leming</au><au>Gui, Zifan</au><au>Du, Bing</au><au>Chen, Shiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2018-12-15</date><risdate>2018</risdate><volume>202</volume><spage>246</spage><epage>257</epage><pages>246-257</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•Highly strength hydrogels were prepared based on natural polysaccharide chitosan.•Chitosan can endow multi-network hydrogels with good antimicrobial activity.•Multi-network hydrogels exhibit good cytocompatible and cell anti-adhesive properties.•The compressive and tensile strength of hydrogels could be facilely tailored.•The antimicrobial, cytocompatible, cell anti-adhesive property can be facilely tailored. Hydrogel with good mechanical and biological properties has great potential and promise for biomedical applications. Here we fabricated a series of novel cytocompatible chitosan (CS) based double-network (DN) and triple-network (TN) hydrogels by physically-chemically crosslinking methods. Natural polysaccharide CS with abundant resources was chosen as the first network due to its good antimicrobial activity, biocompatibility and easy cross-linking reaction. Zwitterionic sulfopropylbetaine (PDMAPS) was chosen as the second network due its good biocompatibility, antimicrobial and antifouling properties. And nonionic poly(2-hydroxyethyl acrylate) (PHEA) was chosen as the final network due to its good biocompatibility, excellent nonfouling and mechanical properties. Cross-section SEM images showed that both CS/PHEA (DN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) and CS/PDMAPS/PHEA (TN1, the molar ratio of glutaraldehyde to structural unit of CS is 0.2/3.0) hydrogels exhibited a smooth and uniformly dispersed porous microstructures with pore size distribution in the range of 20∼100 μm. The largest compressive stress and tensile stress of DN1 hydrogels reached 84.7 MPa and 292 kPa, respectively, and largest compressive stress and tensile stress of TN1 hydrogels could reach 81.9 MPa and 384 kPa, respectively. Moreover, the value of failure strain for TN1 gels reached 1020%. Besides excellent mechanical properties, DN1 and TN1 gels exhibited good antimicrobial, cytocompatible and antifouling properties due to introduction of antimicrobial chitosan, cell anti-adhesive PDMAPS and PHEA. The combination of the excellent mechanical and biological properties of multiple network hydrogels can provide a potential pathway to develop biomedical hydrogels as promising bioapplications in wound dressing and other biomedical applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30286998</pmid><doi>10.1016/j.carbpol.2018.08.124</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3188-9557</orcidid><orcidid>https://orcid.org/0000-0002-5338-690X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2018-12, Vol.202, p.246-257
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2116846544
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acrylates - chemical synthesis
Acrylates - chemistry
Acrylates - pharmacology
Animals
Anti microbial
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Cell Adhesion - drug effects
Cell anti-adhesion
Cell Survival - drug effects
Chitosan
Chitosan - chemistry
Chitosan - pharmacology
Cross-Linking Reagents - chemical synthesis
Cross-Linking Reagents - chemistry
Cross-Linking Reagents - pharmacology
Escherichia coli - drug effects
Hydrogel
Hydrogels - chemical synthesis
Hydrogels - chemistry
Hydrogels - pharmacology
Mice
Microbial Sensitivity Tests
Molecular Structure
NIH 3T3 Cells
Particle Size
Polymers - chemical synthesis
Polymers - chemistry
Polymers - pharmacology
Staphylococcus aureus - drug effects
Surface Properties
Zwitterions
title Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytocompatible%20chitosan%20based%20multi-network%20hydrogels%20with%20antimicrobial,%20cell%20anti-adhesive%20and%20mechanical%20properties&rft.jtitle=Carbohydrate%20polymers&rft.au=Zou,%20Wanjing&rft.date=2018-12-15&rft.volume=202&rft.spage=246&rft.epage=257&rft.pages=246-257&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2018.08.124&rft_dat=%3Cproquest_cross%3E2116846544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116846544&rft_id=info:pmid/30286998&rft_els_id=S0144861718310348&rfr_iscdi=true