VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria

Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Biomembranes 2018-12, Vol.1860 (12), p.2599-2607
1. Verfasser: Lemeshko, Victor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2607
container_issue 12
container_start_page 2599
container_title Biochimica et biophysica acta. Biomembranes
container_volume 1860
creator Lemeshko, Victor V.
description Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by the voltage-dependent anion channel (VDAC, outer membrane) and the adenine nucleotide translocator (ANT, inner membrane). Earlier, we proposed a mechanism for the generation of the mitochondrial outer membrane potential (OMP) as a result of partial application of the inner membrane potential (IMP) to MOM through the electrogenic ANT-VDAC-HK inter-membrane contact sites. According to this previous mechanism, the Gibbs free energy of the hexokinase reaction might modulate the generated OMP (Lemeshko, Biophys. J., 2002). In the present work, a new computational model was developed to perform thermodynamic estimations of the proposed mechanism of IMP-HKI-mediated generation of OMP. The calculated OMP was high enough to electrically regulate MOM permeability for negatively charged metabolites through free, unbound VDACs in MOM. On the other hand, the positive-inside polarity of OMP generated by the IMP-HKI-mediated mechanism is expected to protect mitochondria against elevated concentrations of cytosolic Ca2+. This computational analysis suggests that metabolically-dependent generation of OMP in the brain mitochondria, controlled by many factors that modulate VDAC1-HKI interaction, VDAC's voltage-gating properties and permeability, might represent one of the physiological mechanisms of regulation of the brain energy metabolism and of neuronal death resistance, and might also be involved in various neurodegenerative disorders, such as Alzheimer's disease. [Display omitted] •Generation of the outer membrane potential in brain mitochondria•Computational thermodynamic analysis of the proposed mechanism•Fast electrical coordination of mitochondrial oxidative phosphorylation and glycolysis•The positive outer membrane potential in Ca2+-resistance of brain mitochondria•Possible involvement of the outer membrane potential in neurodegenerative disorders
doi_str_mv 10.1016/j.bbamem.2018.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116843415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273618302979</els_id><sourcerecordid>2116843415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6b4e8c3120497021a4c25190807da8bd18086eadf6bf2e8d288690974f36a7243</originalsourceid><addsrcrecordid>eNp9kcGOFCEQhonRuLOrb2AMRy_dAk3TtAeTzeiqyRov6pXQUO0wNtACbfQpfGUZZ_XopSr58_1VBT9CTyhpKaHi-bGdJu3Bt4xQWaWWEH4P7agcxoYJzu6jHSGkb9jQiQt0mfORVBtn_UN00RE20pGxHfr1-dX1HsMCpqQYnMkvcN_i92AOOrjssQ4Wm-jXrejiYtAL9tHCguOMD_AjfnVBZ2gsrBAshIK_QID0Bz0h5QA4bgUSrodOSQfAayyVc3WQC7hKtXpXojnEYJPTj9CDWS8ZHt_1K_Tp5vXH_dvm9sObd_vr28ZwIksjJg7SdJQRPg6EUc0N6-lIJBmslpOlkkgB2s5imhlIy6QUIxkHPndCD4x3V-jZee6a4rcNclHeZQPLUm-MW1aMUiF5x2lfUX5GTYo5J5jVmpzX6aeiRJ2iUEd1jkKdojipNYpqe3q3YZs82H-mv39fgZdnAOo7vztIKhsHwYB1qcahbHT_3_AbUCKdQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116843415</pqid></control><display><type>article</type><title>VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lemeshko, Victor V.</creator><creatorcontrib>Lemeshko, Victor V.</creatorcontrib><description>Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by the voltage-dependent anion channel (VDAC, outer membrane) and the adenine nucleotide translocator (ANT, inner membrane). Earlier, we proposed a mechanism for the generation of the mitochondrial outer membrane potential (OMP) as a result of partial application of the inner membrane potential (IMP) to MOM through the electrogenic ANT-VDAC-HK inter-membrane contact sites. According to this previous mechanism, the Gibbs free energy of the hexokinase reaction might modulate the generated OMP (Lemeshko, Biophys. J., 2002). In the present work, a new computational model was developed to perform thermodynamic estimations of the proposed mechanism of IMP-HKI-mediated generation of OMP. The calculated OMP was high enough to electrically regulate MOM permeability for negatively charged metabolites through free, unbound VDACs in MOM. On the other hand, the positive-inside polarity of OMP generated by the IMP-HKI-mediated mechanism is expected to protect mitochondria against elevated concentrations of cytosolic Ca2+. This computational analysis suggests that metabolically-dependent generation of OMP in the brain mitochondria, controlled by many factors that modulate VDAC1-HKI interaction, VDAC's voltage-gating properties and permeability, might represent one of the physiological mechanisms of regulation of the brain energy metabolism and of neuronal death resistance, and might also be involved in various neurodegenerative disorders, such as Alzheimer's disease. [Display omitted] •Generation of the outer membrane potential in brain mitochondria•Computational thermodynamic analysis of the proposed mechanism•Fast electrical coordination of mitochondrial oxidative phosphorylation and glycolysis•The positive outer membrane potential in Ca2+-resistance of brain mitochondria•Possible involvement of the outer membrane potential in neurodegenerative disorders</description><identifier>ISSN: 0005-2736</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2018.10.004</identifier><identifier>PMID: 30291922</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Brain mitochondria ; Hexokinase ; Membrane potential ; Mitochondrial outer membrane ; VDAC</subject><ispartof>Biochimica et biophysica acta. Biomembranes, 2018-12, Vol.1860 (12), p.2599-2607</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6b4e8c3120497021a4c25190807da8bd18086eadf6bf2e8d288690974f36a7243</citedby><cites>FETCH-LOGICAL-c408t-6b4e8c3120497021a4c25190807da8bd18086eadf6bf2e8d288690974f36a7243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005273618302979$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30291922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemeshko, Victor V.</creatorcontrib><title>VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria</title><title>Biochimica et biophysica acta. Biomembranes</title><addtitle>Biochim Biophys Acta Biomembr</addtitle><description>Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by the voltage-dependent anion channel (VDAC, outer membrane) and the adenine nucleotide translocator (ANT, inner membrane). Earlier, we proposed a mechanism for the generation of the mitochondrial outer membrane potential (OMP) as a result of partial application of the inner membrane potential (IMP) to MOM through the electrogenic ANT-VDAC-HK inter-membrane contact sites. According to this previous mechanism, the Gibbs free energy of the hexokinase reaction might modulate the generated OMP (Lemeshko, Biophys. J., 2002). In the present work, a new computational model was developed to perform thermodynamic estimations of the proposed mechanism of IMP-HKI-mediated generation of OMP. The calculated OMP was high enough to electrically regulate MOM permeability for negatively charged metabolites through free, unbound VDACs in MOM. On the other hand, the positive-inside polarity of OMP generated by the IMP-HKI-mediated mechanism is expected to protect mitochondria against elevated concentrations of cytosolic Ca2+. This computational analysis suggests that metabolically-dependent generation of OMP in the brain mitochondria, controlled by many factors that modulate VDAC1-HKI interaction, VDAC's voltage-gating properties and permeability, might represent one of the physiological mechanisms of regulation of the brain energy metabolism and of neuronal death resistance, and might also be involved in various neurodegenerative disorders, such as Alzheimer's disease. [Display omitted] •Generation of the outer membrane potential in brain mitochondria•Computational thermodynamic analysis of the proposed mechanism•Fast electrical coordination of mitochondrial oxidative phosphorylation and glycolysis•The positive outer membrane potential in Ca2+-resistance of brain mitochondria•Possible involvement of the outer membrane potential in neurodegenerative disorders</description><subject>Brain mitochondria</subject><subject>Hexokinase</subject><subject>Membrane potential</subject><subject>Mitochondrial outer membrane</subject><subject>VDAC</subject><issn>0005-2736</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kcGOFCEQhonRuLOrb2AMRy_dAk3TtAeTzeiqyRov6pXQUO0wNtACbfQpfGUZZ_XopSr58_1VBT9CTyhpKaHi-bGdJu3Bt4xQWaWWEH4P7agcxoYJzu6jHSGkb9jQiQt0mfORVBtn_UN00RE20pGxHfr1-dX1HsMCpqQYnMkvcN_i92AOOrjssQ4Wm-jXrejiYtAL9tHCguOMD_AjfnVBZ2gsrBAshIK_QID0Bz0h5QA4bgUSrodOSQfAayyVc3WQC7hKtXpXojnEYJPTj9CDWS8ZHt_1K_Tp5vXH_dvm9sObd_vr28ZwIksjJg7SdJQRPg6EUc0N6-lIJBmslpOlkkgB2s5imhlIy6QUIxkHPndCD4x3V-jZee6a4rcNclHeZQPLUm-MW1aMUiF5x2lfUX5GTYo5J5jVmpzX6aeiRJ2iUEd1jkKdojipNYpqe3q3YZs82H-mv39fgZdnAOo7vztIKhsHwYB1qcahbHT_3_AbUCKdQw</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Lemeshko, Victor V.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria</title><author>Lemeshko, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6b4e8c3120497021a4c25190807da8bd18086eadf6bf2e8d288690974f36a7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain mitochondria</topic><topic>Hexokinase</topic><topic>Membrane potential</topic><topic>Mitochondrial outer membrane</topic><topic>VDAC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemeshko, Victor V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemeshko, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria</atitle><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle><addtitle>Biochim Biophys Acta Biomembr</addtitle><date>2018-12</date><risdate>2018</risdate><volume>1860</volume><issue>12</issue><spage>2599</spage><epage>2607</epage><pages>2599-2607</pages><issn>0005-2736</issn><eissn>1879-2642</eissn><abstract>Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by the voltage-dependent anion channel (VDAC, outer membrane) and the adenine nucleotide translocator (ANT, inner membrane). Earlier, we proposed a mechanism for the generation of the mitochondrial outer membrane potential (OMP) as a result of partial application of the inner membrane potential (IMP) to MOM through the electrogenic ANT-VDAC-HK inter-membrane contact sites. According to this previous mechanism, the Gibbs free energy of the hexokinase reaction might modulate the generated OMP (Lemeshko, Biophys. J., 2002). In the present work, a new computational model was developed to perform thermodynamic estimations of the proposed mechanism of IMP-HKI-mediated generation of OMP. The calculated OMP was high enough to electrically regulate MOM permeability for negatively charged metabolites through free, unbound VDACs in MOM. On the other hand, the positive-inside polarity of OMP generated by the IMP-HKI-mediated mechanism is expected to protect mitochondria against elevated concentrations of cytosolic Ca2+. This computational analysis suggests that metabolically-dependent generation of OMP in the brain mitochondria, controlled by many factors that modulate VDAC1-HKI interaction, VDAC's voltage-gating properties and permeability, might represent one of the physiological mechanisms of regulation of the brain energy metabolism and of neuronal death resistance, and might also be involved in various neurodegenerative disorders, such as Alzheimer's disease. [Display omitted] •Generation of the outer membrane potential in brain mitochondria•Computational thermodynamic analysis of the proposed mechanism•Fast electrical coordination of mitochondrial oxidative phosphorylation and glycolysis•The positive outer membrane potential in Ca2+-resistance of brain mitochondria•Possible involvement of the outer membrane potential in neurodegenerative disorders</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30291922</pmid><doi>10.1016/j.bbamem.2018.10.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2736
ispartof Biochimica et biophysica acta. Biomembranes, 2018-12, Vol.1860 (12), p.2599-2607
issn 0005-2736
1879-2642
language eng
recordid cdi_proquest_miscellaneous_2116843415
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Brain mitochondria
Hexokinase
Membrane potential
Mitochondrial outer membrane
VDAC
title VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VDAC%20electronics:%205.%20Mechanism%20and%20computational%20model%20of%20hexokinase-dependent%20generation%20of%20the%20outer%20membrane%20potential%20in%20brain%20mitochondria&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Biomembranes&rft.au=Lemeshko,%20Victor%20V.&rft.date=2018-12&rft.volume=1860&rft.issue=12&rft.spage=2599&rft.epage=2607&rft.pages=2599-2607&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2018.10.004&rft_dat=%3Cproquest_cross%3E2116843415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116843415&rft_id=info:pmid/30291922&rft_els_id=S0005273618302979&rfr_iscdi=true