Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D
Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive vel...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2018-09, Vol.89 (9), p.093502-093502 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 093502 |
---|---|
container_issue | 9 |
container_start_page | 093502 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Samuell, C. M. Allen, S. L. Meyer, W. H. Isler, R. C. Briesemeister, A. Wilcox, R. S. Lasnier, C. J. Mclean, A. G. Howard, J. |
description | Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for. |
doi_str_mv | 10.1063/1.5039367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116129256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116129256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</originalsourceid><addsrcrecordid>eNp90c1u1DAUBWALUbXT0gUvgCzYFKQUX_8mS9QpMFIlNoWtlTjXbaokDnZSqW9fDzMtEhL1xgt_Orq-h5C3wM6BafEZzhUTldDmFVkBK6vCaC5ekxVjQhbayPKIHKd0x_JRAIfkSDBuSiPEilz_wtj5ztVzF0YaPF2HaeoxUhduMeLokHZDfdONN9SHSPmabt099sF18wMdsE5LxAHHOdH8sN5sNsX6DTnwdZ_wdH-fkJ9fL68vvhdXP75tLr5cFU5KNRfGq6ZhXDVVy5lHbFtkTcOBg3KsapELlMzwUqORXgJHFJxJKI0uDasdihPyfpcb0tzZlCdCd-vCOKKbLUgjpVYZne3QFMPvBdNshy457Pt6xLAkywE08IornemHf-hdWOKYv5AVK1WlhYasPu6UiyGliN5OMe8oPlhgdtuHBbvvI9t3-8SlGbB9lk8FZPBpB7bT_ynhxbT_4vsQ_0I7tV48Asw2nkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108596361</pqid></control><display><type>article</type><title>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Samuell, C. M. ; Allen, S. L. ; Meyer, W. H. ; Isler, R. C. ; Briesemeister, A. ; Wilcox, R. S. ; Lasnier, C. J. ; Mclean, A. G. ; Howard, J.</creator><creatorcontrib>Samuell, C. M. ; Allen, S. L. ; Meyer, W. H. ; Isler, R. C. ; Briesemeister, A. ; Wilcox, R. S. ; Lasnier, C. J. ; Mclean, A. G. ; Howard, J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; General Atomics, San Diego, CA (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5039367</identifier><identifier>PMID: 30278733</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; chemical elements ; Coherence ; coherence imaging ; crystal optics ; Diagnostic systems ; Doppler effect ; Environmental effects ; Fourier transforms ; Framing cameras ; imaging spectroscopy ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; interferometers ; interferometry ; Ion velocity ; Physics - Plasma physics ; plasma confinement ; Scientific apparatus & instruments ; Spectrum analysis ; Thin films ; Velocity measurement ; Vibration measurement</subject><ispartof>Review of scientific instruments, 2018-09, Vol.89 (9), p.093502-093502</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</citedby><cites>FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</cites><orcidid>0000-0003-1369-1739 ; 0000-0002-1130-0899 ; 0000000313691739 ; 0000000211300899 ; 0000000337030978 ; 0000000253687200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5039367$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1474465$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Samuell, C. M.</creatorcontrib><creatorcontrib>Allen, S. L.</creatorcontrib><creatorcontrib>Meyer, W. H.</creatorcontrib><creatorcontrib>Isler, R. C.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Wilcox, R. S.</creatorcontrib><creatorcontrib>Lasnier, C. J.</creatorcontrib><creatorcontrib>Mclean, A. G.</creatorcontrib><creatorcontrib>Howard, J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>chemical elements</subject><subject>Coherence</subject><subject>coherence imaging</subject><subject>crystal optics</subject><subject>Diagnostic systems</subject><subject>Doppler effect</subject><subject>Environmental effects</subject><subject>Fourier transforms</subject><subject>Framing cameras</subject><subject>imaging spectroscopy</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>interferometers</subject><subject>interferometry</subject><subject>Ion velocity</subject><subject>Physics - Plasma physics</subject><subject>plasma confinement</subject><subject>Scientific apparatus & instruments</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Velocity measurement</subject><subject>Vibration measurement</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90c1u1DAUBWALUbXT0gUvgCzYFKQUX_8mS9QpMFIlNoWtlTjXbaokDnZSqW9fDzMtEhL1xgt_Orq-h5C3wM6BafEZzhUTldDmFVkBK6vCaC5ekxVjQhbayPKIHKd0x_JRAIfkSDBuSiPEilz_wtj5ztVzF0YaPF2HaeoxUhduMeLokHZDfdONN9SHSPmabt099sF18wMdsE5LxAHHOdH8sN5sNsX6DTnwdZ_wdH-fkJ9fL68vvhdXP75tLr5cFU5KNRfGq6ZhXDVVy5lHbFtkTcOBg3KsapELlMzwUqORXgJHFJxJKI0uDasdihPyfpcb0tzZlCdCd-vCOKKbLUgjpVYZne3QFMPvBdNshy457Pt6xLAkywE08IornemHf-hdWOKYv5AVK1WlhYasPu6UiyGliN5OMe8oPlhgdtuHBbvvI9t3-8SlGbB9lk8FZPBpB7bT_ynhxbT_4vsQ_0I7tV48Asw2nkM</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Samuell, C. M.</creator><creator>Allen, S. L.</creator><creator>Meyer, W. H.</creator><creator>Isler, R. C.</creator><creator>Briesemeister, A.</creator><creator>Wilcox, R. S.</creator><creator>Lasnier, C. J.</creator><creator>Mclean, A. G.</creator><creator>Howard, J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-1130-0899</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000211300899</orcidid><orcidid>https://orcid.org/0000000337030978</orcidid><orcidid>https://orcid.org/0000000253687200</orcidid></search><sort><creationdate>20180901</creationdate><title>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</title><author>Samuell, C. M. ; Allen, S. L. ; Meyer, W. H. ; Isler, R. C. ; Briesemeister, A. ; Wilcox, R. S. ; Lasnier, C. J. ; Mclean, A. G. ; Howard, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>chemical elements</topic><topic>Coherence</topic><topic>coherence imaging</topic><topic>crystal optics</topic><topic>Diagnostic systems</topic><topic>Doppler effect</topic><topic>Environmental effects</topic><topic>Fourier transforms</topic><topic>Framing cameras</topic><topic>imaging spectroscopy</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>interferometers</topic><topic>interferometry</topic><topic>Ion velocity</topic><topic>Physics - Plasma physics</topic><topic>plasma confinement</topic><topic>Scientific apparatus & instruments</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Velocity measurement</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuell, C. M.</creatorcontrib><creatorcontrib>Allen, S. L.</creatorcontrib><creatorcontrib>Meyer, W. H.</creatorcontrib><creatorcontrib>Isler, R. C.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Wilcox, R. S.</creatorcontrib><creatorcontrib>Lasnier, C. J.</creatorcontrib><creatorcontrib>Mclean, A. G.</creatorcontrib><creatorcontrib>Howard, J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuell, C. M.</au><au>Allen, S. L.</au><au>Meyer, W. H.</au><au>Isler, R. C.</au><au>Briesemeister, A.</au><au>Wilcox, R. S.</au><au>Lasnier, C. J.</au><au>Mclean, A. G.</au><au>Howard, J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>89</volume><issue>9</issue><spage>093502</spage><epage>093502</epage><pages>093502-093502</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30278733</pmid><doi>10.1063/1.5039367</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-1130-0899</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000211300899</orcidid><orcidid>https://orcid.org/0000000337030978</orcidid><orcidid>https://orcid.org/0000000253687200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-09, Vol.89 (9), p.093502-093502 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116129256 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY chemical elements Coherence coherence imaging crystal optics Diagnostic systems Doppler effect Environmental effects Fourier transforms Framing cameras imaging spectroscopy INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY interferometers interferometry Ion velocity Physics - Plasma physics plasma confinement Scientific apparatus & instruments Spectrum analysis Thin films Velocity measurement Vibration measurement |
title | Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verification%20of%20Doppler%20coherence%20imaging%20for%202D%20ion%20velocity%20measurements%20on%20DIII-D&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Samuell,%20C.%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-09-01&rft.volume=89&rft.issue=9&rft.spage=093502&rft.epage=093502&rft.pages=093502-093502&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5039367&rft_dat=%3Cproquest_pubme%3E2116129256%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108596361&rft_id=info:pmid/30278733&rfr_iscdi=true |