Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D

Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive vel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-09, Vol.89 (9), p.093502-093502
Hauptverfasser: Samuell, C. M., Allen, S. L., Meyer, W. H., Isler, R. C., Briesemeister, A., Wilcox, R. S., Lasnier, C. J., Mclean, A. G., Howard, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 093502
container_issue 9
container_start_page 093502
container_title Review of scientific instruments
container_volume 89
creator Samuell, C. M.
Allen, S. L.
Meyer, W. H.
Isler, R. C.
Briesemeister, A.
Wilcox, R. S.
Lasnier, C. J.
Mclean, A. G.
Howard, J.
description Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.
doi_str_mv 10.1063/1.5039367
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116129256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116129256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</originalsourceid><addsrcrecordid>eNp90c1u1DAUBWALUbXT0gUvgCzYFKQUX_8mS9QpMFIlNoWtlTjXbaokDnZSqW9fDzMtEhL1xgt_Orq-h5C3wM6BafEZzhUTldDmFVkBK6vCaC5ekxVjQhbayPKIHKd0x_JRAIfkSDBuSiPEilz_wtj5ztVzF0YaPF2HaeoxUhduMeLokHZDfdONN9SHSPmabt099sF18wMdsE5LxAHHOdH8sN5sNsX6DTnwdZ_wdH-fkJ9fL68vvhdXP75tLr5cFU5KNRfGq6ZhXDVVy5lHbFtkTcOBg3KsapELlMzwUqORXgJHFJxJKI0uDasdihPyfpcb0tzZlCdCd-vCOKKbLUgjpVYZne3QFMPvBdNshy457Pt6xLAkywE08IornemHf-hdWOKYv5AVK1WlhYasPu6UiyGliN5OMe8oPlhgdtuHBbvvI9t3-8SlGbB9lk8FZPBpB7bT_ynhxbT_4vsQ_0I7tV48Asw2nkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108596361</pqid></control><display><type>article</type><title>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Samuell, C. M. ; Allen, S. L. ; Meyer, W. H. ; Isler, R. C. ; Briesemeister, A. ; Wilcox, R. S. ; Lasnier, C. J. ; Mclean, A. G. ; Howard, J.</creator><creatorcontrib>Samuell, C. M. ; Allen, S. L. ; Meyer, W. H. ; Isler, R. C. ; Briesemeister, A. ; Wilcox, R. S. ; Lasnier, C. J. ; Mclean, A. G. ; Howard, J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; General Atomics, San Diego, CA (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5039367</identifier><identifier>PMID: 30278733</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; chemical elements ; Coherence ; coherence imaging ; crystal optics ; Diagnostic systems ; Doppler effect ; Environmental effects ; Fourier transforms ; Framing cameras ; imaging spectroscopy ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; interferometers ; interferometry ; Ion velocity ; Physics - Plasma physics ; plasma confinement ; Scientific apparatus &amp; instruments ; Spectrum analysis ; Thin films ; Velocity measurement ; Vibration measurement</subject><ispartof>Review of scientific instruments, 2018-09, Vol.89 (9), p.093502-093502</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</citedby><cites>FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</cites><orcidid>0000-0003-1369-1739 ; 0000-0002-1130-0899 ; 0000000313691739 ; 0000000211300899 ; 0000000337030978 ; 0000000253687200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5039367$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1474465$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Samuell, C. M.</creatorcontrib><creatorcontrib>Allen, S. L.</creatorcontrib><creatorcontrib>Meyer, W. H.</creatorcontrib><creatorcontrib>Isler, R. C.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Wilcox, R. S.</creatorcontrib><creatorcontrib>Lasnier, C. J.</creatorcontrib><creatorcontrib>Mclean, A. G.</creatorcontrib><creatorcontrib>Howard, J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>chemical elements</subject><subject>Coherence</subject><subject>coherence imaging</subject><subject>crystal optics</subject><subject>Diagnostic systems</subject><subject>Doppler effect</subject><subject>Environmental effects</subject><subject>Fourier transforms</subject><subject>Framing cameras</subject><subject>imaging spectroscopy</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>interferometers</subject><subject>interferometry</subject><subject>Ion velocity</subject><subject>Physics - Plasma physics</subject><subject>plasma confinement</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Velocity measurement</subject><subject>Vibration measurement</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90c1u1DAUBWALUbXT0gUvgCzYFKQUX_8mS9QpMFIlNoWtlTjXbaokDnZSqW9fDzMtEhL1xgt_Orq-h5C3wM6BafEZzhUTldDmFVkBK6vCaC5ekxVjQhbayPKIHKd0x_JRAIfkSDBuSiPEilz_wtj5ztVzF0YaPF2HaeoxUhduMeLokHZDfdONN9SHSPmabt099sF18wMdsE5LxAHHOdH8sN5sNsX6DTnwdZ_wdH-fkJ9fL68vvhdXP75tLr5cFU5KNRfGq6ZhXDVVy5lHbFtkTcOBg3KsapELlMzwUqORXgJHFJxJKI0uDasdihPyfpcb0tzZlCdCd-vCOKKbLUgjpVYZne3QFMPvBdNshy457Pt6xLAkywE08IornemHf-hdWOKYv5AVK1WlhYasPu6UiyGliN5OMe8oPlhgdtuHBbvvI9t3-8SlGbB9lk8FZPBpB7bT_ynhxbT_4vsQ_0I7tV48Asw2nkM</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Samuell, C. M.</creator><creator>Allen, S. L.</creator><creator>Meyer, W. H.</creator><creator>Isler, R. C.</creator><creator>Briesemeister, A.</creator><creator>Wilcox, R. S.</creator><creator>Lasnier, C. J.</creator><creator>Mclean, A. G.</creator><creator>Howard, J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-1130-0899</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000211300899</orcidid><orcidid>https://orcid.org/0000000337030978</orcidid><orcidid>https://orcid.org/0000000253687200</orcidid></search><sort><creationdate>20180901</creationdate><title>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</title><author>Samuell, C. M. ; Allen, S. L. ; Meyer, W. H. ; Isler, R. C. ; Briesemeister, A. ; Wilcox, R. S. ; Lasnier, C. J. ; Mclean, A. G. ; Howard, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-7f5bb025b9d20feedde0bb21215c09de23e407286e74f412ee32041876870ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>chemical elements</topic><topic>Coherence</topic><topic>coherence imaging</topic><topic>crystal optics</topic><topic>Diagnostic systems</topic><topic>Doppler effect</topic><topic>Environmental effects</topic><topic>Fourier transforms</topic><topic>Framing cameras</topic><topic>imaging spectroscopy</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>interferometers</topic><topic>interferometry</topic><topic>Ion velocity</topic><topic>Physics - Plasma physics</topic><topic>plasma confinement</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Velocity measurement</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuell, C. M.</creatorcontrib><creatorcontrib>Allen, S. L.</creatorcontrib><creatorcontrib>Meyer, W. H.</creatorcontrib><creatorcontrib>Isler, R. C.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Wilcox, R. S.</creatorcontrib><creatorcontrib>Lasnier, C. J.</creatorcontrib><creatorcontrib>Mclean, A. G.</creatorcontrib><creatorcontrib>Howard, J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuell, C. M.</au><au>Allen, S. L.</au><au>Meyer, W. H.</au><au>Isler, R. C.</au><au>Briesemeister, A.</au><au>Wilcox, R. S.</au><au>Lasnier, C. J.</au><au>Mclean, A. G.</au><au>Howard, J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>89</volume><issue>9</issue><spage>093502</spage><epage>093502</epage><pages>093502-093502</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Coherence Imaging Spectroscopy (CIS) has emerged as a powerful tool for investigating complex ion phenomena in the boundary of magnetically confined plasma devices. The combination of Fourier-transform interferometry and high-resolution fast-framing cameras has made it possible to make sensitive velocity measurements that are also spatially resolved. However, this sensitivity makes the diagnostic vulnerable to environmental effects including thermal drifts, vibration, and magnetic fields that can influence the velocity measurement. Additionally, the ability to provide an absolute calibration for these geometries can be impacted by differences in the light-collection geometry between the plasma and reference light source, spectral impurities, and the presence of thin-films on in-vessel optics. This paper discusses the mitigation of these effects and demonstration that environmental effects result in less than 0.5 km/s error on the DIII-D CIS systems. A diagnostic comparison is used to demonstrate agreement between CIS and traditional spectroscopy once tomographic artifacts are accounted for.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30278733</pmid><doi>10.1063/1.5039367</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-1130-0899</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000211300899</orcidid><orcidid>https://orcid.org/0000000337030978</orcidid><orcidid>https://orcid.org/0000000253687200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-09, Vol.89 (9), p.093502-093502
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_2116129256
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
chemical elements
Coherence
coherence imaging
crystal optics
Diagnostic systems
Doppler effect
Environmental effects
Fourier transforms
Framing cameras
imaging spectroscopy
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
interferometers
interferometry
Ion velocity
Physics - Plasma physics
plasma confinement
Scientific apparatus & instruments
Spectrum analysis
Thin films
Velocity measurement
Vibration measurement
title Verification of Doppler coherence imaging for 2D ion velocity measurements on DIII-D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verification%20of%20Doppler%20coherence%20imaging%20for%202D%20ion%20velocity%20measurements%20on%20DIII-D&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Samuell,%20C.%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-09-01&rft.volume=89&rft.issue=9&rft.spage=093502&rft.epage=093502&rft.pages=093502-093502&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5039367&rft_dat=%3Cproquest_pubme%3E2116129256%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108596361&rft_id=info:pmid/30278733&rfr_iscdi=true