Introduction to focus issue on hydrodynamic quantum analogs
Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2018-09, Vol.28 (9), p.096001-096001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 096001 |
---|---|
container_issue | 9 |
container_start_page | 096001 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 28 |
creator | Bush, John W. M. Couder, Yves Gilet, Tristan Milewski, Paul A. Nachbin, André |
description | Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics? |
doi_str_mv | 10.1063/1.5055383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116126719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114657415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</originalsourceid><addsrcrecordid>eNp90UtLHTEUAOAgSn20C_-ADLiphbE5ec0MropoKwjdtOuQyeMamZlck4lw_31znVsFC13lkHznJDkHoVPAl4AF_QqXHHNOW7qHjgC3Xd2IluxvY85q4BgfouOUHjHGQCj_gA4pJk0rKDlCV3fTHIPJevZhquZQuaBzqnxK2VZl52FjyvFmUqPX1VNW05zHSk1qCKv0ER04NST7abeeoN-3N7-uf9T3P7_fXX-7rzUTZK6BESc6AF1eYxzpeOOMYwyMxY3gjBjVdLwlwijHTOucUMYpSpi2PWjT9fQE0aXu4O3KyhB7L5-JDMovcR5WUmnZW0mIaCWhFOOmZH1estYxPGWbZjn6pO0wqMmGnCQBEEBEA12h5-_oY8ixfPJFMcEbBryoi0XpGFKK1sl19KOKGwlYbucgQe7mUOzZrmLuR2te5d_GF_BlAUn7WW2b_2qeQ3yrJNfG_Q__e_UfFVic8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114657415</pqid></control><display><type>article</type><title>Introduction to focus issue on hydrodynamic quantum analogs</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bush, John W. M. ; Couder, Yves ; Gilet, Tristan ; Milewski, Paul A. ; Nachbin, André</creator><creatorcontrib>Bush, John W. M. ; Couder, Yves ; Gilet, Tristan ; Milewski, Paul A. ; Nachbin, André</creatorcontrib><description>Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?</description><identifier>ISSN: 1054-1500</identifier><identifier>ISSN: 1089-7682</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5055383</identifier><identifier>PMID: 30278632</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Analogs ; Droplets ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Markov processes ; Physical, chemical, mathematical & earth Sciences ; Physics ; Physique ; Physique, chimie, mathématiques & sciences de la terre ; Quantum statistics ; Resonant interactions</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-09, Vol.28 (9), p.096001-096001</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</citedby><cites>FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</cites><orcidid>0000-0002-7936-7256 ; 0000-0003-2044-7208 ; 0000000279367256 ; 0000000320447208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, John W. M.</creatorcontrib><creatorcontrib>Couder, Yves</creatorcontrib><creatorcontrib>Gilet, Tristan</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Nachbin, André</creatorcontrib><title>Introduction to focus issue on hydrodynamic quantum analogs</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?</description><subject>Analogs</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Markov processes</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physics</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><subject>Quantum statistics</subject><subject>Resonant interactions</subject><issn>1054-1500</issn><issn>1089-7682</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90UtLHTEUAOAgSn20C_-ADLiphbE5ec0MropoKwjdtOuQyeMamZlck4lw_31znVsFC13lkHznJDkHoVPAl4AF_QqXHHNOW7qHjgC3Xd2IluxvY85q4BgfouOUHjHGQCj_gA4pJk0rKDlCV3fTHIPJevZhquZQuaBzqnxK2VZl52FjyvFmUqPX1VNW05zHSk1qCKv0ER04NST7abeeoN-3N7-uf9T3P7_fXX-7rzUTZK6BESc6AF1eYxzpeOOMYwyMxY3gjBjVdLwlwijHTOucUMYpSpi2PWjT9fQE0aXu4O3KyhB7L5-JDMovcR5WUmnZW0mIaCWhFOOmZH1estYxPGWbZjn6pO0wqMmGnCQBEEBEA12h5-_oY8ixfPJFMcEbBryoi0XpGFKK1sl19KOKGwlYbucgQe7mUOzZrmLuR2te5d_GF_BlAUn7WW2b_2qeQ3yrJNfG_Q__e_UfFVic8A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Bush, John W. M.</creator><creator>Couder, Yves</creator><creator>Gilet, Tristan</creator><creator>Milewski, Paul A.</creator><creator>Nachbin, André</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-7936-7256</orcidid><orcidid>https://orcid.org/0000-0003-2044-7208</orcidid><orcidid>https://orcid.org/0000000279367256</orcidid><orcidid>https://orcid.org/0000000320447208</orcidid></search><sort><creationdate>20180901</creationdate><title>Introduction to focus issue on hydrodynamic quantum analogs</title><author>Bush, John W. M. ; Couder, Yves ; Gilet, Tristan ; Milewski, Paul A. ; Nachbin, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analogs</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Markov processes</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physics</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><topic>Quantum statistics</topic><topic>Resonant interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, John W. M.</creatorcontrib><creatorcontrib>Couder, Yves</creatorcontrib><creatorcontrib>Gilet, Tristan</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Nachbin, André</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, John W. M.</au><au>Couder, Yves</au><au>Gilet, Tristan</au><au>Milewski, Paul A.</au><au>Nachbin, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to focus issue on hydrodynamic quantum analogs</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>28</volume><issue>9</issue><spage>096001</spage><epage>096001</epage><pages>096001-096001</pages><issn>1054-1500</issn><issn>1089-7682</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30278632</pmid><doi>10.1063/1.5055383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7936-7256</orcidid><orcidid>https://orcid.org/0000-0003-2044-7208</orcidid><orcidid>https://orcid.org/0000000279367256</orcidid><orcidid>https://orcid.org/0000000320447208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2018-09, Vol.28 (9), p.096001-096001 |
issn | 1054-1500 1089-7682 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2116126719 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Analogs Droplets Fluid dynamics Fluid flow Hydrodynamics Markov processes Physical, chemical, mathematical & earth Sciences Physics Physique Physique, chimie, mathématiques & sciences de la terre Quantum statistics Resonant interactions |
title | Introduction to focus issue on hydrodynamic quantum analogs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20focus%20issue%20on%20hydrodynamic%20quantum%20analogs&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Bush,%20John%20W.%20M.&rft.date=2018-09-01&rft.volume=28&rft.issue=9&rft.spage=096001&rft.epage=096001&rft.pages=096001-096001&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5055383&rft_dat=%3Cproquest_cross%3E2114657415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114657415&rft_id=info:pmid/30278632&rfr_iscdi=true |