Introduction to focus issue on hydrodynamic quantum analogs

Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2018-09, Vol.28 (9), p.096001-096001
Hauptverfasser: Bush, John W. M., Couder, Yves, Gilet, Tristan, Milewski, Paul A., Nachbin, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 096001
container_issue 9
container_start_page 096001
container_title Chaos (Woodbury, N.Y.)
container_volume 28
creator Bush, John W. M.
Couder, Yves
Gilet, Tristan
Milewski, Paul A.
Nachbin, André
description Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?
doi_str_mv 10.1063/1.5055383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116126719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114657415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</originalsourceid><addsrcrecordid>eNp90UtLHTEUAOAgSn20C_-ADLiphbE5ec0MropoKwjdtOuQyeMamZlck4lw_31znVsFC13lkHznJDkHoVPAl4AF_QqXHHNOW7qHjgC3Xd2IluxvY85q4BgfouOUHjHGQCj_gA4pJk0rKDlCV3fTHIPJevZhquZQuaBzqnxK2VZl52FjyvFmUqPX1VNW05zHSk1qCKv0ER04NST7abeeoN-3N7-uf9T3P7_fXX-7rzUTZK6BESc6AF1eYxzpeOOMYwyMxY3gjBjVdLwlwijHTOucUMYpSpi2PWjT9fQE0aXu4O3KyhB7L5-JDMovcR5WUmnZW0mIaCWhFOOmZH1estYxPGWbZjn6pO0wqMmGnCQBEEBEA12h5-_oY8ixfPJFMcEbBryoi0XpGFKK1sl19KOKGwlYbucgQe7mUOzZrmLuR2te5d_GF_BlAUn7WW2b_2qeQ3yrJNfG_Q__e_UfFVic8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114657415</pqid></control><display><type>article</type><title>Introduction to focus issue on hydrodynamic quantum analogs</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bush, John W. M. ; Couder, Yves ; Gilet, Tristan ; Milewski, Paul A. ; Nachbin, André</creator><creatorcontrib>Bush, John W. M. ; Couder, Yves ; Gilet, Tristan ; Milewski, Paul A. ; Nachbin, André</creatorcontrib><description>Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?</description><identifier>ISSN: 1054-1500</identifier><identifier>ISSN: 1089-7682</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5055383</identifier><identifier>PMID: 30278632</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Analogs ; Droplets ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Markov processes ; Physical, chemical, mathematical &amp; earth Sciences ; Physics ; Physique ; Physique, chimie, mathématiques &amp; sciences de la terre ; Quantum statistics ; Resonant interactions</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-09, Vol.28 (9), p.096001-096001</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</citedby><cites>FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</cites><orcidid>0000-0002-7936-7256 ; 0000-0003-2044-7208 ; 0000000279367256 ; 0000000320447208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, John W. M.</creatorcontrib><creatorcontrib>Couder, Yves</creatorcontrib><creatorcontrib>Gilet, Tristan</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Nachbin, André</creatorcontrib><title>Introduction to focus issue on hydrodynamic quantum analogs</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?</description><subject>Analogs</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Markov processes</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physics</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>Quantum statistics</subject><subject>Resonant interactions</subject><issn>1054-1500</issn><issn>1089-7682</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90UtLHTEUAOAgSn20C_-ADLiphbE5ec0MropoKwjdtOuQyeMamZlck4lw_31znVsFC13lkHznJDkHoVPAl4AF_QqXHHNOW7qHjgC3Xd2IluxvY85q4BgfouOUHjHGQCj_gA4pJk0rKDlCV3fTHIPJevZhquZQuaBzqnxK2VZl52FjyvFmUqPX1VNW05zHSk1qCKv0ER04NST7abeeoN-3N7-uf9T3P7_fXX-7rzUTZK6BESc6AF1eYxzpeOOMYwyMxY3gjBjVdLwlwijHTOucUMYpSpi2PWjT9fQE0aXu4O3KyhB7L5-JDMovcR5WUmnZW0mIaCWhFOOmZH1estYxPGWbZjn6pO0wqMmGnCQBEEBEA12h5-_oY8ixfPJFMcEbBryoi0XpGFKK1sl19KOKGwlYbucgQe7mUOzZrmLuR2te5d_GF_BlAUn7WW2b_2qeQ3yrJNfG_Q__e_UfFVic8A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Bush, John W. M.</creator><creator>Couder, Yves</creator><creator>Gilet, Tristan</creator><creator>Milewski, Paul A.</creator><creator>Nachbin, André</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-7936-7256</orcidid><orcidid>https://orcid.org/0000-0003-2044-7208</orcidid><orcidid>https://orcid.org/0000000279367256</orcidid><orcidid>https://orcid.org/0000000320447208</orcidid></search><sort><creationdate>20180901</creationdate><title>Introduction to focus issue on hydrodynamic quantum analogs</title><author>Bush, John W. M. ; Couder, Yves ; Gilet, Tristan ; Milewski, Paul A. ; Nachbin, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-142f6911c054df2957fdf441de076542da795826daf4d8ff6adfa324ceb1cd9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analogs</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Markov processes</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physics</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>Quantum statistics</topic><topic>Resonant interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, John W. M.</creatorcontrib><creatorcontrib>Couder, Yves</creatorcontrib><creatorcontrib>Gilet, Tristan</creatorcontrib><creatorcontrib>Milewski, Paul A.</creatorcontrib><creatorcontrib>Nachbin, André</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, John W. M.</au><au>Couder, Yves</au><au>Gilet, Tristan</au><au>Milewski, Paul A.</au><au>Nachbin, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to focus issue on hydrodynamic quantum analogs</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>28</volume><issue>9</issue><spage>096001</spage><epage>096001</epage><pages>096001-096001</pages><issn>1054-1500</issn><issn>1089-7682</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is “path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30278632</pmid><doi>10.1063/1.5055383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7936-7256</orcidid><orcidid>https://orcid.org/0000-0003-2044-7208</orcidid><orcidid>https://orcid.org/0000000279367256</orcidid><orcidid>https://orcid.org/0000000320447208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2018-09, Vol.28 (9), p.096001-096001
issn 1054-1500
1089-7682
1089-7682
language eng
recordid cdi_proquest_miscellaneous_2116126719
source AIP Journals Complete; Alma/SFX Local Collection
subjects Analogs
Droplets
Fluid dynamics
Fluid flow
Hydrodynamics
Markov processes
Physical, chemical, mathematical & earth Sciences
Physics
Physique
Physique, chimie, mathématiques & sciences de la terre
Quantum statistics
Resonant interactions
title Introduction to focus issue on hydrodynamic quantum analogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20focus%20issue%20on%20hydrodynamic%20quantum%20analogs&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Bush,%20John%20W.%20M.&rft.date=2018-09-01&rft.volume=28&rft.issue=9&rft.spage=096001&rft.epage=096001&rft.pages=096001-096001&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5055383&rft_dat=%3Cproquest_cross%3E2114657415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114657415&rft_id=info:pmid/30278632&rfr_iscdi=true