Automated EEG source imaging: A retrospective, blinded clinical validation study

•We evaluated the accuracy of automated EEG source imaging in presurgical evaluation.•The fully automated method had an accuracy of 61% (95% CI: 45–76%).•The semi-automated method had an accuracy of 78% (95% CI: 62–89%). To evaluate the accuracy of automated EEG source imaging (ESI) in localizing ep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology 2018-11, Vol.129 (11), p.2403-2410
Hauptverfasser: Baroumand, Amir G., van Mierlo, Pieter, Strobbe, Gregor, Pinborg, Lars H., Fabricius, Martin, Rubboli, Guido, Leffers, Anne-Mette, Uldall, Peter, Jespersen, Bo, Brennum, Jannick, Henriksen, Otto Mølby, Beniczky, Sándor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2410
container_issue 11
container_start_page 2403
container_title Clinical neurophysiology
container_volume 129
creator Baroumand, Amir G.
van Mierlo, Pieter
Strobbe, Gregor
Pinborg, Lars H.
Fabricius, Martin
Rubboli, Guido
Leffers, Anne-Mette
Uldall, Peter
Jespersen, Bo
Brennum, Jannick
Henriksen, Otto Mølby
Beniczky, Sándor
description •We evaluated the accuracy of automated EEG source imaging in presurgical evaluation.•The fully automated method had an accuracy of 61% (95% CI: 45–76%).•The semi-automated method had an accuracy of 78% (95% CI: 62–89%). To evaluate the accuracy of automated EEG source imaging (ESI) in localizing epileptogenic zone. Long-term EEG, recorded with the standard 25-electrode array of the IFCN, from 41 consecutive patients with focal epilepsy who underwent resective surgery, were analyzed blinded to the surgical outcome. The automated analysis comprised spike-detection, clustering and source imaging at the half-rising time and at the peak of each spike-cluster, using individual head-models with six tissue-layers and a distributed source model (sLORETA). The fully automated approach presented ESI of the cluster with the highest number of spikes, at the half-rising time. In addition, a physician involved in the presurgical evaluation of the patients, evaluated the automated ESI results (up to four clusters per patient) in clinical context and selected the dominant cluster and the analysis time-point (semi-automated approach). The reference standard was location of the resected area and outcome one year after operation. Accuracy was 61% (95% CI: 45–76%) for the fully automated approach and 78% (95% CI: 62–89%) for the semi-automated approach. Automated ESI has an accuracy similar to previously reported neuroimaging methods. Automated ESI will contribute to increased utilization of source imaging in the presurgical evaluation of patients with epilepsy.
doi_str_mv 10.1016/j.clinph.2018.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116123265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245718312367</els_id><sourcerecordid>2116123265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9f672630eb6e5a6c1aa9bd766bfea8f9f31b03b90833d3538cd7cdf66bdf31e03</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMofkz_gUgvvbD1JFnT1AthjPkBA73Q65AmpzOja2fSDvbvzdj00qscOM_Jy_sQck0ho0DF_TIzjWvXXxkDKjMoM6D5ETmnsmCpLHN2HGcuZcrGeXFGLkJYAkABY3ZKzjiwQnJZnpP3ydB3K92jTWaz5yR0gzeYuJVeuHbxkEwSj73vwhpN7zZ4l1Qx00Z4l-2MbpKNbpzVvevaJPSD3V6Sk1o3Aa8O74h8Ps0-pi_p_O35dTqZp2YMsk_LWhRMcMBKYK6FoVqXlS2EqGrUsi5rTivgVQmSc8tzLo0tjK3j3sYVAh-R2_2_a999Dxh6tXLBYNPoFrshKEapoIwzkUd0vEdNbBI81mrtY0O_VRTUzqVaqr1LtXOpoFTRZTy7OSQM1Qrt39GvvAg87gGMPTcOvQrGYWvQOh99Kdu5_xN-AIq9h8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116123265</pqid></control><display><type>article</type><title>Automated EEG source imaging: A retrospective, blinded clinical validation study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Baroumand, Amir G. ; van Mierlo, Pieter ; Strobbe, Gregor ; Pinborg, Lars H. ; Fabricius, Martin ; Rubboli, Guido ; Leffers, Anne-Mette ; Uldall, Peter ; Jespersen, Bo ; Brennum, Jannick ; Henriksen, Otto Mølby ; Beniczky, Sándor</creator><creatorcontrib>Baroumand, Amir G. ; van Mierlo, Pieter ; Strobbe, Gregor ; Pinborg, Lars H. ; Fabricius, Martin ; Rubboli, Guido ; Leffers, Anne-Mette ; Uldall, Peter ; Jespersen, Bo ; Brennum, Jannick ; Henriksen, Otto Mølby ; Beniczky, Sándor</creatorcontrib><description>•We evaluated the accuracy of automated EEG source imaging in presurgical evaluation.•The fully automated method had an accuracy of 61% (95% CI: 45–76%).•The semi-automated method had an accuracy of 78% (95% CI: 62–89%). To evaluate the accuracy of automated EEG source imaging (ESI) in localizing epileptogenic zone. Long-term EEG, recorded with the standard 25-electrode array of the IFCN, from 41 consecutive patients with focal epilepsy who underwent resective surgery, were analyzed blinded to the surgical outcome. The automated analysis comprised spike-detection, clustering and source imaging at the half-rising time and at the peak of each spike-cluster, using individual head-models with six tissue-layers and a distributed source model (sLORETA). The fully automated approach presented ESI of the cluster with the highest number of spikes, at the half-rising time. In addition, a physician involved in the presurgical evaluation of the patients, evaluated the automated ESI results (up to four clusters per patient) in clinical context and selected the dominant cluster and the analysis time-point (semi-automated approach). The reference standard was location of the resected area and outcome one year after operation. Accuracy was 61% (95% CI: 45–76%) for the fully automated approach and 78% (95% CI: 62–89%) for the semi-automated approach. Automated ESI has an accuracy similar to previously reported neuroimaging methods. Automated ESI will contribute to increased utilization of source imaging in the presurgical evaluation of patients with epilepsy.</description><identifier>ISSN: 1388-2457</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/j.clinph.2018.09.015</identifier><identifier>PMID: 30278389</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adolescent ; Adult ; Automation ; Automation - methods ; Automation - standards ; Child ; EEG ; Electroencephalography - methods ; Electroencephalography - standards ; Epilepsy ; Epilepsy - diagnosis ; Female ; Humans ; Male ; Middle Aged ; Presurgical evaluation ; Sensitivity and Specificity ; Source imaging ; Source localization</subject><ispartof>Clinical neurophysiology, 2018-11, Vol.129 (11), p.2403-2410</ispartof><rights>2018 International Federation of Clinical Neurophysiology</rights><rights>Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9f672630eb6e5a6c1aa9bd766bfea8f9f31b03b90833d3538cd7cdf66bdf31e03</citedby><cites>FETCH-LOGICAL-c408t-9f672630eb6e5a6c1aa9bd766bfea8f9f31b03b90833d3538cd7cdf66bdf31e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1388245718312367$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baroumand, Amir G.</creatorcontrib><creatorcontrib>van Mierlo, Pieter</creatorcontrib><creatorcontrib>Strobbe, Gregor</creatorcontrib><creatorcontrib>Pinborg, Lars H.</creatorcontrib><creatorcontrib>Fabricius, Martin</creatorcontrib><creatorcontrib>Rubboli, Guido</creatorcontrib><creatorcontrib>Leffers, Anne-Mette</creatorcontrib><creatorcontrib>Uldall, Peter</creatorcontrib><creatorcontrib>Jespersen, Bo</creatorcontrib><creatorcontrib>Brennum, Jannick</creatorcontrib><creatorcontrib>Henriksen, Otto Mølby</creatorcontrib><creatorcontrib>Beniczky, Sándor</creatorcontrib><title>Automated EEG source imaging: A retrospective, blinded clinical validation study</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>•We evaluated the accuracy of automated EEG source imaging in presurgical evaluation.•The fully automated method had an accuracy of 61% (95% CI: 45–76%).•The semi-automated method had an accuracy of 78% (95% CI: 62–89%). To evaluate the accuracy of automated EEG source imaging (ESI) in localizing epileptogenic zone. Long-term EEG, recorded with the standard 25-electrode array of the IFCN, from 41 consecutive patients with focal epilepsy who underwent resective surgery, were analyzed blinded to the surgical outcome. The automated analysis comprised spike-detection, clustering and source imaging at the half-rising time and at the peak of each spike-cluster, using individual head-models with six tissue-layers and a distributed source model (sLORETA). The fully automated approach presented ESI of the cluster with the highest number of spikes, at the half-rising time. In addition, a physician involved in the presurgical evaluation of the patients, evaluated the automated ESI results (up to four clusters per patient) in clinical context and selected the dominant cluster and the analysis time-point (semi-automated approach). The reference standard was location of the resected area and outcome one year after operation. Accuracy was 61% (95% CI: 45–76%) for the fully automated approach and 78% (95% CI: 62–89%) for the semi-automated approach. Automated ESI has an accuracy similar to previously reported neuroimaging methods. Automated ESI will contribute to increased utilization of source imaging in the presurgical evaluation of patients with epilepsy.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Automation</subject><subject>Automation - methods</subject><subject>Automation - standards</subject><subject>Child</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Electroencephalography - standards</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Presurgical evaluation</subject><subject>Sensitivity and Specificity</subject><subject>Source imaging</subject><subject>Source localization</subject><issn>1388-2457</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMofkz_gUgvvbD1JFnT1AthjPkBA73Q65AmpzOja2fSDvbvzdj00qscOM_Jy_sQck0ho0DF_TIzjWvXXxkDKjMoM6D5ETmnsmCpLHN2HGcuZcrGeXFGLkJYAkABY3ZKzjiwQnJZnpP3ydB3K92jTWaz5yR0gzeYuJVeuHbxkEwSj73vwhpN7zZ4l1Qx00Z4l-2MbpKNbpzVvevaJPSD3V6Sk1o3Aa8O74h8Ps0-pi_p_O35dTqZp2YMsk_LWhRMcMBKYK6FoVqXlS2EqGrUsi5rTivgVQmSc8tzLo0tjK3j3sYVAh-R2_2_a999Dxh6tXLBYNPoFrshKEapoIwzkUd0vEdNbBI81mrtY0O_VRTUzqVaqr1LtXOpoFTRZTy7OSQM1Qrt39GvvAg87gGMPTcOvQrGYWvQOh99Kdu5_xN-AIq9h8g</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Baroumand, Amir G.</creator><creator>van Mierlo, Pieter</creator><creator>Strobbe, Gregor</creator><creator>Pinborg, Lars H.</creator><creator>Fabricius, Martin</creator><creator>Rubboli, Guido</creator><creator>Leffers, Anne-Mette</creator><creator>Uldall, Peter</creator><creator>Jespersen, Bo</creator><creator>Brennum, Jannick</creator><creator>Henriksen, Otto Mølby</creator><creator>Beniczky, Sándor</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201811</creationdate><title>Automated EEG source imaging: A retrospective, blinded clinical validation study</title><author>Baroumand, Amir G. ; van Mierlo, Pieter ; Strobbe, Gregor ; Pinborg, Lars H. ; Fabricius, Martin ; Rubboli, Guido ; Leffers, Anne-Mette ; Uldall, Peter ; Jespersen, Bo ; Brennum, Jannick ; Henriksen, Otto Mølby ; Beniczky, Sándor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9f672630eb6e5a6c1aa9bd766bfea8f9f31b03b90833d3538cd7cdf66bdf31e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Automation</topic><topic>Automation - methods</topic><topic>Automation - standards</topic><topic>Child</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Electroencephalography - standards</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Presurgical evaluation</topic><topic>Sensitivity and Specificity</topic><topic>Source imaging</topic><topic>Source localization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baroumand, Amir G.</creatorcontrib><creatorcontrib>van Mierlo, Pieter</creatorcontrib><creatorcontrib>Strobbe, Gregor</creatorcontrib><creatorcontrib>Pinborg, Lars H.</creatorcontrib><creatorcontrib>Fabricius, Martin</creatorcontrib><creatorcontrib>Rubboli, Guido</creatorcontrib><creatorcontrib>Leffers, Anne-Mette</creatorcontrib><creatorcontrib>Uldall, Peter</creatorcontrib><creatorcontrib>Jespersen, Bo</creatorcontrib><creatorcontrib>Brennum, Jannick</creatorcontrib><creatorcontrib>Henriksen, Otto Mølby</creatorcontrib><creatorcontrib>Beniczky, Sándor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baroumand, Amir G.</au><au>van Mierlo, Pieter</au><au>Strobbe, Gregor</au><au>Pinborg, Lars H.</au><au>Fabricius, Martin</au><au>Rubboli, Guido</au><au>Leffers, Anne-Mette</au><au>Uldall, Peter</au><au>Jespersen, Bo</au><au>Brennum, Jannick</au><au>Henriksen, Otto Mølby</au><au>Beniczky, Sándor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated EEG source imaging: A retrospective, blinded clinical validation study</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2018-11</date><risdate>2018</risdate><volume>129</volume><issue>11</issue><spage>2403</spage><epage>2410</epage><pages>2403-2410</pages><issn>1388-2457</issn><eissn>1872-8952</eissn><abstract>•We evaluated the accuracy of automated EEG source imaging in presurgical evaluation.•The fully automated method had an accuracy of 61% (95% CI: 45–76%).•The semi-automated method had an accuracy of 78% (95% CI: 62–89%). To evaluate the accuracy of automated EEG source imaging (ESI) in localizing epileptogenic zone. Long-term EEG, recorded with the standard 25-electrode array of the IFCN, from 41 consecutive patients with focal epilepsy who underwent resective surgery, were analyzed blinded to the surgical outcome. The automated analysis comprised spike-detection, clustering and source imaging at the half-rising time and at the peak of each spike-cluster, using individual head-models with six tissue-layers and a distributed source model (sLORETA). The fully automated approach presented ESI of the cluster with the highest number of spikes, at the half-rising time. In addition, a physician involved in the presurgical evaluation of the patients, evaluated the automated ESI results (up to four clusters per patient) in clinical context and selected the dominant cluster and the analysis time-point (semi-automated approach). The reference standard was location of the resected area and outcome one year after operation. Accuracy was 61% (95% CI: 45–76%) for the fully automated approach and 78% (95% CI: 62–89%) for the semi-automated approach. Automated ESI has an accuracy similar to previously reported neuroimaging methods. Automated ESI will contribute to increased utilization of source imaging in the presurgical evaluation of patients with epilepsy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30278389</pmid><doi>10.1016/j.clinph.2018.09.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-2457
ispartof Clinical neurophysiology, 2018-11, Vol.129 (11), p.2403-2410
issn 1388-2457
1872-8952
language eng
recordid cdi_proquest_miscellaneous_2116123265
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adolescent
Adult
Automation
Automation - methods
Automation - standards
Child
EEG
Electroencephalography - methods
Electroencephalography - standards
Epilepsy
Epilepsy - diagnosis
Female
Humans
Male
Middle Aged
Presurgical evaluation
Sensitivity and Specificity
Source imaging
Source localization
title Automated EEG source imaging: A retrospective, blinded clinical validation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20EEG%20source%20imaging:%20A%20retrospective,%20blinded%20clinical%20validation%20study&rft.jtitle=Clinical%20neurophysiology&rft.au=Baroumand,%20Amir%20G.&rft.date=2018-11&rft.volume=129&rft.issue=11&rft.spage=2403&rft.epage=2410&rft.pages=2403-2410&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/j.clinph.2018.09.015&rft_dat=%3Cproquest_cross%3E2116123265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116123265&rft_id=info:pmid/30278389&rft_els_id=S1388245718312367&rfr_iscdi=true