Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe

A colorimetric and fluorescent pH probe was designed by doping carbon dots (C-dots) with Eu(III), Tb(III) and 2,6-pyridinedicarboxylic acid (DPA). The resulting nanoparticles were applied as fluorescent indicators for pH values (best detected at excitation/emission wavelengths of 272/545, 614 nm). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2018-10, Vol.185 (10), p.489-9, Article 489
Hauptverfasser: Wang, Lude, Chen, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 10
container_start_page 489
container_title Mikrochimica acta (1966)
container_volume 185
creator Wang, Lude
Chen, Yang
description A colorimetric and fluorescent pH probe was designed by doping carbon dots (C-dots) with Eu(III), Tb(III) and 2,6-pyridinedicarboxylic acid (DPA). The resulting nanoparticles were applied as fluorescent indicators for pH values (best detected at excitation/emission wavelengths of 272/545, 614 nm). The pH induced optical effects are due to pH induced variations in energy transfer. The fluorescence of the probe shows a continuous color variation, and a linear change with pH values in the range from 3.0 to 10.0 can be established by using a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. This new kind of pH nanoprobe is more accurate than previously reported pH indicator probes because the pH value can be calculated by using chromaticity coordinates that only depend on the chromaticity. The pH nanoprobe was applied to visualize pH values in human breast adenocarcinoma cells (MCF-7). Graphical abstract Carbon dots modified with Eu(III) and Tb(III) complexes of 2,6-pyridinedicarboxylic acid (DPA) were prepared. The doped carbon dots were used as a pH-sensitive nanosensor. The fluorescence chromaticity of the nanoparticles changes with the variation of pH value.
doi_str_mv 10.1007/s00604-018-3027-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116122698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715058483</galeid><sourcerecordid>A715058483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-7da900738ca35c7a8a6d8057050da4a74663ed37f29a2043829272fa44f85eae3</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpaTZpP0AvxdBLL0pH_7XHENKkZaGX5CxmJTlxsKWtZB_y7avFaQKFogGhmd8bPXiEfGJwzgDMtwqgQVJglgrghto3ZMOk0FSBEW_JBoBrKrThJ-S01kcAZjSX78lJo22b2Q35ucM0P2AaQuxCPsTQeSz7nNpjrh226vpxySVWH5OPnX8oecJ58MP8RPdYm-Bw0x1K3scP5F2PY40fn-8zcvf96vbyhu5-Xf-4vNhRL42ZqQm4beaF9SiUN2hRBwvKgIKAEo3UWsQgTM-3yEEKy7fc8B6l7K2KGMUZ-brubb_-XmKd3TQ0d-OIKealOs6YZpzrrW3ol3_Qx7yU1NwdKaUlMK0adb5S9zhGN6Q-zwV9OyFOg88p9kPrXximQFlpRROwVeBLrrXE3h3KMGF5cgzcMRm3JuNaMu6YjDta-fxsZdlPMbwo_kbRAL4CtY3SfSyvXv-_9Q_SF5ZB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115640165</pqid></control><display><type>article</type><title>Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Lude ; Chen, Yang</creator><creatorcontrib>Wang, Lude ; Chen, Yang</creatorcontrib><description>A colorimetric and fluorescent pH probe was designed by doping carbon dots (C-dots) with Eu(III), Tb(III) and 2,6-pyridinedicarboxylic acid (DPA). The resulting nanoparticles were applied as fluorescent indicators for pH values (best detected at excitation/emission wavelengths of 272/545, 614 nm). The pH induced optical effects are due to pH induced variations in energy transfer. The fluorescence of the probe shows a continuous color variation, and a linear change with pH values in the range from 3.0 to 10.0 can be established by using a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. This new kind of pH nanoprobe is more accurate than previously reported pH indicator probes because the pH value can be calculated by using chromaticity coordinates that only depend on the chromaticity. The pH nanoprobe was applied to visualize pH values in human breast adenocarcinoma cells (MCF-7). Graphical abstract Carbon dots modified with Eu(III) and Tb(III) complexes of 2,6-pyridinedicarboxylic acid (DPA) were prepared. The doped carbon dots were used as a pH-sensitive nanosensor. The fluorescence chromaticity of the nanoparticles changes with the variation of pH value.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-018-3027-8</identifier><identifier>PMID: 30280268</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Carbon dots ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromaticity ; Colorimetry ; Energy transfer ; Fluorescence ; Fluorescent indicators ; Hydrogen-ion concentration ; Mathematical analysis ; Microengineering ; Nanochemistry ; Nanoparticles ; Nanotechnology ; Original Paper ; Pyridine ; Rare earth metals</subject><ispartof>Mikrochimica acta (1966), 2018-10, Vol.185 (10), p.489-9, Article 489</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Microchimica Acta is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-7da900738ca35c7a8a6d8057050da4a74663ed37f29a2043829272fa44f85eae3</citedby><cites>FETCH-LOGICAL-c477t-7da900738ca35c7a8a6d8057050da4a74663ed37f29a2043829272fa44f85eae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-018-3027-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-018-3027-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30280268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lude</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><title>Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>A colorimetric and fluorescent pH probe was designed by doping carbon dots (C-dots) with Eu(III), Tb(III) and 2,6-pyridinedicarboxylic acid (DPA). The resulting nanoparticles were applied as fluorescent indicators for pH values (best detected at excitation/emission wavelengths of 272/545, 614 nm). The pH induced optical effects are due to pH induced variations in energy transfer. The fluorescence of the probe shows a continuous color variation, and a linear change with pH values in the range from 3.0 to 10.0 can be established by using a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. This new kind of pH nanoprobe is more accurate than previously reported pH indicator probes because the pH value can be calculated by using chromaticity coordinates that only depend on the chromaticity. The pH nanoprobe was applied to visualize pH values in human breast adenocarcinoma cells (MCF-7). Graphical abstract Carbon dots modified with Eu(III) and Tb(III) complexes of 2,6-pyridinedicarboxylic acid (DPA) were prepared. The doped carbon dots were used as a pH-sensitive nanosensor. The fluorescence chromaticity of the nanoparticles changes with the variation of pH value.</description><subject>Analytical Chemistry</subject><subject>Carbon dots</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromaticity</subject><subject>Colorimetry</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Hydrogen-ion concentration</subject><subject>Mathematical analysis</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Pyridine</subject><subject>Rare earth metals</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU9r3DAQxUVpaTZpP0AvxdBLL0pH_7XHENKkZaGX5CxmJTlxsKWtZB_y7avFaQKFogGhmd8bPXiEfGJwzgDMtwqgQVJglgrghto3ZMOk0FSBEW_JBoBrKrThJ-S01kcAZjSX78lJo22b2Q35ucM0P2AaQuxCPsTQeSz7nNpjrh226vpxySVWH5OPnX8oecJ58MP8RPdYm-Bw0x1K3scP5F2PY40fn-8zcvf96vbyhu5-Xf-4vNhRL42ZqQm4beaF9SiUN2hRBwvKgIKAEo3UWsQgTM-3yEEKy7fc8B6l7K2KGMUZ-brubb_-XmKd3TQ0d-OIKealOs6YZpzrrW3ol3_Qx7yU1NwdKaUlMK0adb5S9zhGN6Q-zwV9OyFOg88p9kPrXximQFlpRROwVeBLrrXE3h3KMGF5cgzcMRm3JuNaMu6YjDta-fxsZdlPMbwo_kbRAL4CtY3SfSyvXv-_9Q_SF5ZB</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wang, Lude</creator><creator>Chen, Yang</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20181001</creationdate><title>Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe</title><author>Wang, Lude ; Chen, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-7da900738ca35c7a8a6d8057050da4a74663ed37f29a2043829272fa44f85eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Carbon dots</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromaticity</topic><topic>Colorimetry</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Hydrogen-ion concentration</topic><topic>Mathematical analysis</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Pyridine</topic><topic>Rare earth metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lude</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lude</au><au>Chen, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>185</volume><issue>10</issue><spage>489</spage><epage>9</epage><pages>489-9</pages><artnum>489</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A colorimetric and fluorescent pH probe was designed by doping carbon dots (C-dots) with Eu(III), Tb(III) and 2,6-pyridinedicarboxylic acid (DPA). The resulting nanoparticles were applied as fluorescent indicators for pH values (best detected at excitation/emission wavelengths of 272/545, 614 nm). The pH induced optical effects are due to pH induced variations in energy transfer. The fluorescence of the probe shows a continuous color variation, and a linear change with pH values in the range from 3.0 to 10.0 can be established by using a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. This new kind of pH nanoprobe is more accurate than previously reported pH indicator probes because the pH value can be calculated by using chromaticity coordinates that only depend on the chromaticity. The pH nanoprobe was applied to visualize pH values in human breast adenocarcinoma cells (MCF-7). Graphical abstract Carbon dots modified with Eu(III) and Tb(III) complexes of 2,6-pyridinedicarboxylic acid (DPA) were prepared. The doped carbon dots were used as a pH-sensitive nanosensor. The fluorescence chromaticity of the nanoparticles changes with the variation of pH value.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>30280268</pmid><doi>10.1007/s00604-018-3027-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2018-10, Vol.185 (10), p.489-9, Article 489
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_miscellaneous_2116122698
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Carbon dots
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chromaticity
Colorimetry
Energy transfer
Fluorescence
Fluorescent indicators
Hydrogen-ion concentration
Mathematical analysis
Microengineering
Nanochemistry
Nanoparticles
Nanotechnology
Original Paper
Pyridine
Rare earth metals
title Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lanthanide%20doped%20carbon%20dots%20as%20a%20fluorescence%20chromaticity-based%20pH%20probe&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Wang,%20Lude&rft.date=2018-10-01&rft.volume=185&rft.issue=10&rft.spage=489&rft.epage=9&rft.pages=489-9&rft.artnum=489&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-018-3027-8&rft_dat=%3Cgale_proqu%3EA715058483%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115640165&rft_id=info:pmid/30280268&rft_galeid=A715058483&rfr_iscdi=true