Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition

A procedure, called generalized diabatic-at-construction (GDAC), is presented to transform adiabatic potential energy surfaces into a diabatic representation by generalized singular value decomposition. First, we use a set of localized, valence bond-like configuration state functions, called DAC, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-10, Vol.9 (20), p.6038-6046
Hauptverfasser: Liu, Meiyi, Chen, Xin, Grofe, Adam, Gao, Jiali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6046
container_issue 20
container_start_page 6038
container_title The journal of physical chemistry letters
container_volume 9
creator Liu, Meiyi
Chen, Xin
Grofe, Adam
Gao, Jiali
description A procedure, called generalized diabatic-at-construction (GDAC), is presented to transform adiabatic potential energy surfaces into a diabatic representation by generalized singular value decomposition. First, we use a set of localized, valence bond-like configuration state functions, called DAC, as the basis states. Then, the adiabatic ground and relevant excited states are determined using multistate density functional theory (MSDFT). GDAC differs in the opposite direction from traditional approaches based on adiabatic-to-diabatic transformation with certain property restraints. The method is illustrated with applications to a model first-order bond dissociation reaction of CH3OCH2Cl polarized by a solvent molecule, the ground- and first-excited-state potential energy surfaces near the minimum conical intersection for the ammonia dimer photodissociation, and the multiple avoided curve crossings in the dissociation of lithium hydride. The GDAC diabatization method may be useful for defining charge-localized states in studies of electron transfer and proton-coupled electron transfer reactions in proteins.
doi_str_mv 10.1021/acs.jpclett.8b02472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2116115941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116115941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-776d5ddacf4dc2ed7471b646bb4e842467946c226a1a0abb8dd9d3548b784c483</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwBEjIYxnS2o4TO2PVQkGqxFDoGvmvbaokDrYzwNOT0oCYmO4dvvNd3QPALUYTjAieCuUnh0aVJoQJl4hQRs7AEGeURwzz5PzPPgBX3h8QSjPE2SUYxIgwxng8BJtFIaQIhYLrIILxUAQ4t7UPrlWhsDUcL2bzexj2zra7PVya2jhRFp9Gw3VR79pSOLgRZWvgwihbNdYXR-waXGxF6c1NP0fg7fHhdf4UrV6Wz_PZKhIxTULEWKoTrYXaUq2I0YwyLFOaSkkNp4SmLKOpIiQVWCAhJdc603FCuWScKsrjERifehtn31vjQ14VXpmyFLWxrc8JxinGSUZxF41PUeWs985s88YVlXAfOUb5UWjeCc17oXkvtKPu-gOtrIz-ZX4MdoHpKfBN29bV3b__Vn4BdJOE7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116115941</pqid></control><display><type>article</type><title>Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition</title><source>ACS Publications</source><creator>Liu, Meiyi ; Chen, Xin ; Grofe, Adam ; Gao, Jiali</creator><creatorcontrib>Liu, Meiyi ; Chen, Xin ; Grofe, Adam ; Gao, Jiali</creatorcontrib><description>A procedure, called generalized diabatic-at-construction (GDAC), is presented to transform adiabatic potential energy surfaces into a diabatic representation by generalized singular value decomposition. First, we use a set of localized, valence bond-like configuration state functions, called DAC, as the basis states. Then, the adiabatic ground and relevant excited states are determined using multistate density functional theory (MSDFT). GDAC differs in the opposite direction from traditional approaches based on adiabatic-to-diabatic transformation with certain property restraints. The method is illustrated with applications to a model first-order bond dissociation reaction of CH3OCH2Cl polarized by a solvent molecule, the ground- and first-excited-state potential energy surfaces near the minimum conical intersection for the ammonia dimer photodissociation, and the multiple avoided curve crossings in the dissociation of lithium hydride. The GDAC diabatization method may be useful for defining charge-localized states in studies of electron transfer and proton-coupled electron transfer reactions in proteins.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.8b02472</identifier><identifier>PMID: 30277783</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2018-10, Vol.9 (20), p.6038-6046</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-776d5ddacf4dc2ed7471b646bb4e842467946c226a1a0abb8dd9d3548b784c483</citedby><cites>FETCH-LOGICAL-a345t-776d5ddacf4dc2ed7471b646bb4e842467946c226a1a0abb8dd9d3548b784c483</cites><orcidid>0000-0003-0106-7154 ; 0000-0002-8531-4396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.8b02472$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.8b02472$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30277783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Meiyi</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Grofe, Adam</creatorcontrib><creatorcontrib>Gao, Jiali</creatorcontrib><title>Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>A procedure, called generalized diabatic-at-construction (GDAC), is presented to transform adiabatic potential energy surfaces into a diabatic representation by generalized singular value decomposition. First, we use a set of localized, valence bond-like configuration state functions, called DAC, as the basis states. Then, the adiabatic ground and relevant excited states are determined using multistate density functional theory (MSDFT). GDAC differs in the opposite direction from traditional approaches based on adiabatic-to-diabatic transformation with certain property restraints. The method is illustrated with applications to a model first-order bond dissociation reaction of CH3OCH2Cl polarized by a solvent molecule, the ground- and first-excited-state potential energy surfaces near the minimum conical intersection for the ammonia dimer photodissociation, and the multiple avoided curve crossings in the dissociation of lithium hydride. The GDAC diabatization method may be useful for defining charge-localized states in studies of electron transfer and proton-coupled electron transfer reactions in proteins.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EoqXwBEjIYxnS2o4TO2PVQkGqxFDoGvmvbaokDrYzwNOT0oCYmO4dvvNd3QPALUYTjAieCuUnh0aVJoQJl4hQRs7AEGeURwzz5PzPPgBX3h8QSjPE2SUYxIgwxng8BJtFIaQIhYLrIILxUAQ4t7UPrlWhsDUcL2bzexj2zra7PVya2jhRFp9Gw3VR79pSOLgRZWvgwihbNdYXR-waXGxF6c1NP0fg7fHhdf4UrV6Wz_PZKhIxTULEWKoTrYXaUq2I0YwyLFOaSkkNp4SmLKOpIiQVWCAhJdc603FCuWScKsrjERifehtn31vjQ14VXpmyFLWxrc8JxinGSUZxF41PUeWs985s88YVlXAfOUb5UWjeCc17oXkvtKPu-gOtrIz-ZX4MdoHpKfBN29bV3b__Vn4BdJOE7Q</recordid><startdate>20181018</startdate><enddate>20181018</enddate><creator>Liu, Meiyi</creator><creator>Chen, Xin</creator><creator>Grofe, Adam</creator><creator>Gao, Jiali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0106-7154</orcidid><orcidid>https://orcid.org/0000-0002-8531-4396</orcidid></search><sort><creationdate>20181018</creationdate><title>Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition</title><author>Liu, Meiyi ; Chen, Xin ; Grofe, Adam ; Gao, Jiali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-776d5ddacf4dc2ed7471b646bb4e842467946c226a1a0abb8dd9d3548b784c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Meiyi</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Grofe, Adam</creatorcontrib><creatorcontrib>Gao, Jiali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Meiyi</au><au>Chen, Xin</au><au>Grofe, Adam</au><au>Gao, Jiali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2018-10-18</date><risdate>2018</risdate><volume>9</volume><issue>20</issue><spage>6038</spage><epage>6046</epage><pages>6038-6046</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>A procedure, called generalized diabatic-at-construction (GDAC), is presented to transform adiabatic potential energy surfaces into a diabatic representation by generalized singular value decomposition. First, we use a set of localized, valence bond-like configuration state functions, called DAC, as the basis states. Then, the adiabatic ground and relevant excited states are determined using multistate density functional theory (MSDFT). GDAC differs in the opposite direction from traditional approaches based on adiabatic-to-diabatic transformation with certain property restraints. The method is illustrated with applications to a model first-order bond dissociation reaction of CH3OCH2Cl polarized by a solvent molecule, the ground- and first-excited-state potential energy surfaces near the minimum conical intersection for the ammonia dimer photodissociation, and the multiple avoided curve crossings in the dissociation of lithium hydride. The GDAC diabatization method may be useful for defining charge-localized states in studies of electron transfer and proton-coupled electron transfer reactions in proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30277783</pmid><doi>10.1021/acs.jpclett.8b02472</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0106-7154</orcidid><orcidid>https://orcid.org/0000-0002-8531-4396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2018-10, Vol.9 (20), p.6038-6046
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2116115941
source ACS Publications
title Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diabatic%20States%20at%20Construction%20(DAC)%20through%20Generalized%20Singular%20Value%20Decomposition&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Liu,%20Meiyi&rft.date=2018-10-18&rft.volume=9&rft.issue=20&rft.spage=6038&rft.epage=6046&rft.pages=6038-6046&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.8b02472&rft_dat=%3Cproquest_cross%3E2116115941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116115941&rft_id=info:pmid/30277783&rfr_iscdi=true