Occupied with classification: Which occupational classification scheme better predicts health outcomes?

Health inequalities continue to grow despite continuous policy intervention. Work, one domain of health inequalities, is often included as a component of social class rather than as a determinant in its own right. Many social class classifications are derived from occupation types, but there are oth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social science & medicine (1982) 2019-04, Vol.227, p.56-62
Hauptverfasser: Eyles, Emily, Manley, David, Jones, Kelvyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Health inequalities continue to grow despite continuous policy intervention. Work, one domain of health inequalities, is often included as a component of social class rather than as a determinant in its own right. Many social class classifications are derived from occupation types, but there are other components within them that mean they may not be useful as proxies for occupation. This paper develops the exposome, a life-course exposure model developed by Wild (2005), into the worksome, allowing for the explicit consideration of both physical and psychosocial exposures and effects derived from work and working conditions. The interactions between and within temporal and geographical scales are strongly emphasised, and the interwoven nature of both psychosocial and physical exposures is highlighted. Individuals within an occupational type can be both affected by and effect upon occupation level characteristics and health measures. By using the worksome, occupation types are separated from value-laden social classifications. This paper will empirically examine whether occupation better predicts health measures from the European Working Conditions Survey (EWCS). Logistic regression models using Bayesian MCMC estimation were run for each classification system, for each health measure. Health measures included, for example, whether the respondent felt their work affected their health, their self-rated health, pain in upper or lower limbs, and headaches. Using the Deviance Information Criterion (DIC), a measure of predictive accuracy penalised for model complexity, the models were assessed against one another. The DIC shows empirically which classification system is most suitable for use in modelling. The 2-digit International Standard Classification of Occupations showed the best predictive accuracy for all measures. Therefore, examining the relationship between health and work should be done with classifications specific to occupation or industry rather than socio-economic class classifications. This justifies the worksome, allowing for a conceptual framework to link many forms of work-health research. •Work is often included as part of social class as a social determinant of health.•This is not always appropriate, as class has an implied hierarchy.•The worksome, a theoretical framework is developed from the exposome.•With Bayesian methods, we show that occupational classifications are more suitable.
ISSN:0277-9536
1873-5347
DOI:10.1016/j.socscimed.2018.09.020