Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition

In the bearing health assessment issues, using the adaptive nonstationary vibration signal processing methods in the time-frequency domain, lead to improving of early fault detection. On the other hand, the noise and random impulses which contaminates the input data, are a major challenge in extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2018-12, Vol.83, p.261-275
Hauptverfasser: Hoseinzadeh, Mohammad Sadegh, Khadem, Siamak Esmaeilzadeh, Sadooghi, Mohammad Saleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue
container_start_page 261
container_title ISA transactions
container_volume 83
creator Hoseinzadeh, Mohammad Sadegh
Khadem, Siamak Esmaeilzadeh
Sadooghi, Mohammad Saleh
description In the bearing health assessment issues, using the adaptive nonstationary vibration signal processing methods in the time-frequency domain, lead to improving of early fault detection. On the other hand, the noise and random impulses which contaminates the input data, are a major challenge in extracting fault-related features. The main goal of this paper is to improve the Ensemble Empirical mode decomposition (EEMD) algorithm and combine it with a new proposed denoising process and the higher order spectra to increase the accuracy and speed of the fault severity and type detection. The main approach is to use statistical features without using any dimension reduction and data training. To eliminate unrelated components from faulty condition, the best combination of denoising parameters based on the wavelet transform, is determined by a proposed performance index. In order to enhance the efficiency of the EEMD algorithm, a systematic method is presented to determine the proper amplitude of the additive noise and the Intrinsic Mode Functions (IMFs) selection scheme. The fault occurrence detection and the fault severity level identification are performed by the Fault Severity Index (FSI) definition based on the energy level of the Combined Fault-Sensitive IMF (CFSIMF) envelope using the central limit theorem. Also, taking the advantages of a bispectrum analysis of CFSIMF envelope, fault type recognition can be achieved by Fault Type Index (FTI) quantification. Finally, the proposed method is validated using experimental data set from two different test rigs. Also, the role of the optimum denoising process and the algorithm of systematic selection of the EEMD parameters are described regardless of its type and estimating the consistent degradation pattern. [Display omitted] •Approximate entropy and mutual information are employed to improve EEMD.•Fault Severity Index is performed based on the energy level of CFSIMF envelope.•Using bispectrum of CFSIMF envelope, fault type diagnosis can be achieved.
doi_str_mv 10.1016/j.isatra.2018.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2115278147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057818303379</els_id><sourcerecordid>2115278147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-8ba744bbb66ec45dc79597897e40c75f20e10580756f45bb2f66b19640c37b33</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVoaTZpv0EoPvZidyRb_y6FEtqkECiFHAtCksdBi21tJXkh375aNu0xp4GZ997M_Ai5odBRoOLzvgvZlmQ7BlR1oDsAdUF2VEndMmDsDdkBUN0Cl-qSXOW8BwDGtXpHLntgQg292pHfvza7llBsCUdsxmCf1phDbqaYGoc2hfWpmew2l9y45yYshxSPpx6uGRc3Y4PLIaTg7dwscawJ6ONyqBElxPU9eTvZOeOHl3pNHr9_e7y9bx9-3v24_frQ-l6w0ipn5TA454RAP_DRS821VFriAF7yiQFS4AokF9PAnWOTEI5qUae9dH1_TT6dY-txfzbMxSwhe5xnu2LcsmGUciYVHWSVDmepTzHnhJM5pLDY9GwomBNWszdnrOaE1YA2FWu1fXzZsLkFx_-mfxyr4MtZgPXNY8Bksg-4ehxDQl_MGMPrG_4CWCKMEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115278147</pqid></control><display><type>article</type><title>Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hoseinzadeh, Mohammad Sadegh ; Khadem, Siamak Esmaeilzadeh ; Sadooghi, Mohammad Saleh</creator><creatorcontrib>Hoseinzadeh, Mohammad Sadegh ; Khadem, Siamak Esmaeilzadeh ; Sadooghi, Mohammad Saleh</creatorcontrib><description>In the bearing health assessment issues, using the adaptive nonstationary vibration signal processing methods in the time-frequency domain, lead to improving of early fault detection. On the other hand, the noise and random impulses which contaminates the input data, are a major challenge in extracting fault-related features. The main goal of this paper is to improve the Ensemble Empirical mode decomposition (EEMD) algorithm and combine it with a new proposed denoising process and the higher order spectra to increase the accuracy and speed of the fault severity and type detection. The main approach is to use statistical features without using any dimension reduction and data training. To eliminate unrelated components from faulty condition, the best combination of denoising parameters based on the wavelet transform, is determined by a proposed performance index. In order to enhance the efficiency of the EEMD algorithm, a systematic method is presented to determine the proper amplitude of the additive noise and the Intrinsic Mode Functions (IMFs) selection scheme. The fault occurrence detection and the fault severity level identification are performed by the Fault Severity Index (FSI) definition based on the energy level of the Combined Fault-Sensitive IMF (CFSIMF) envelope using the central limit theorem. Also, taking the advantages of a bispectrum analysis of CFSIMF envelope, fault type recognition can be achieved by Fault Type Index (FTI) quantification. Finally, the proposed method is validated using experimental data set from two different test rigs. Also, the role of the optimum denoising process and the algorithm of systematic selection of the EEMD parameters are described regardless of its type and estimating the consistent degradation pattern. [Display omitted] •Approximate entropy and mutual information are employed to improve EEMD.•Fault Severity Index is performed based on the energy level of CFSIMF envelope.•Using bispectrum of CFSIMF envelope, fault type diagnosis can be achieved.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2018.09.008</identifier><identifier>PMID: 30268438</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bearing fault diagnosis ; Denoising ; Ensemble empirical mode decomposition ; Higher order spectra</subject><ispartof>ISA transactions, 2018-12, Vol.83, p.261-275</ispartof><rights>2018 ISA</rights><rights>Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-8ba744bbb66ec45dc79597897e40c75f20e10580756f45bb2f66b19640c37b33</citedby><cites>FETCH-LOGICAL-c362t-8ba744bbb66ec45dc79597897e40c75f20e10580756f45bb2f66b19640c37b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2018.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30268438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoseinzadeh, Mohammad Sadegh</creatorcontrib><creatorcontrib>Khadem, Siamak Esmaeilzadeh</creatorcontrib><creatorcontrib>Sadooghi, Mohammad Saleh</creatorcontrib><title>Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>In the bearing health assessment issues, using the adaptive nonstationary vibration signal processing methods in the time-frequency domain, lead to improving of early fault detection. On the other hand, the noise and random impulses which contaminates the input data, are a major challenge in extracting fault-related features. The main goal of this paper is to improve the Ensemble Empirical mode decomposition (EEMD) algorithm and combine it with a new proposed denoising process and the higher order spectra to increase the accuracy and speed of the fault severity and type detection. The main approach is to use statistical features without using any dimension reduction and data training. To eliminate unrelated components from faulty condition, the best combination of denoising parameters based on the wavelet transform, is determined by a proposed performance index. In order to enhance the efficiency of the EEMD algorithm, a systematic method is presented to determine the proper amplitude of the additive noise and the Intrinsic Mode Functions (IMFs) selection scheme. The fault occurrence detection and the fault severity level identification are performed by the Fault Severity Index (FSI) definition based on the energy level of the Combined Fault-Sensitive IMF (CFSIMF) envelope using the central limit theorem. Also, taking the advantages of a bispectrum analysis of CFSIMF envelope, fault type recognition can be achieved by Fault Type Index (FTI) quantification. Finally, the proposed method is validated using experimental data set from two different test rigs. Also, the role of the optimum denoising process and the algorithm of systematic selection of the EEMD parameters are described regardless of its type and estimating the consistent degradation pattern. [Display omitted] •Approximate entropy and mutual information are employed to improve EEMD.•Fault Severity Index is performed based on the energy level of CFSIMF envelope.•Using bispectrum of CFSIMF envelope, fault type diagnosis can be achieved.</description><subject>Bearing fault diagnosis</subject><subject>Denoising</subject><subject>Ensemble empirical mode decomposition</subject><subject>Higher order spectra</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVoaTZpv0EoPvZidyRb_y6FEtqkECiFHAtCksdBi21tJXkh375aNu0xp4GZ997M_Ai5odBRoOLzvgvZlmQ7BlR1oDsAdUF2VEndMmDsDdkBUN0Cl-qSXOW8BwDGtXpHLntgQg292pHfvza7llBsCUdsxmCf1phDbqaYGoc2hfWpmew2l9y45yYshxSPpx6uGRc3Y4PLIaTg7dwscawJ6ONyqBElxPU9eTvZOeOHl3pNHr9_e7y9bx9-3v24_frQ-l6w0ipn5TA454RAP_DRS821VFriAF7yiQFS4AokF9PAnWOTEI5qUae9dH1_TT6dY-txfzbMxSwhe5xnu2LcsmGUciYVHWSVDmepTzHnhJM5pLDY9GwomBNWszdnrOaE1YA2FWu1fXzZsLkFx_-mfxyr4MtZgPXNY8Bksg-4ehxDQl_MGMPrG_4CWCKMEQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Hoseinzadeh, Mohammad Sadegh</creator><creator>Khadem, Siamak Esmaeilzadeh</creator><creator>Sadooghi, Mohammad Saleh</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition</title><author>Hoseinzadeh, Mohammad Sadegh ; Khadem, Siamak Esmaeilzadeh ; Sadooghi, Mohammad Saleh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-8ba744bbb66ec45dc79597897e40c75f20e10580756f45bb2f66b19640c37b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bearing fault diagnosis</topic><topic>Denoising</topic><topic>Ensemble empirical mode decomposition</topic><topic>Higher order spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoseinzadeh, Mohammad Sadegh</creatorcontrib><creatorcontrib>Khadem, Siamak Esmaeilzadeh</creatorcontrib><creatorcontrib>Sadooghi, Mohammad Saleh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoseinzadeh, Mohammad Sadegh</au><au>Khadem, Siamak Esmaeilzadeh</au><au>Sadooghi, Mohammad Saleh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2018-12</date><risdate>2018</risdate><volume>83</volume><spage>261</spage><epage>275</epage><pages>261-275</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>In the bearing health assessment issues, using the adaptive nonstationary vibration signal processing methods in the time-frequency domain, lead to improving of early fault detection. On the other hand, the noise and random impulses which contaminates the input data, are a major challenge in extracting fault-related features. The main goal of this paper is to improve the Ensemble Empirical mode decomposition (EEMD) algorithm and combine it with a new proposed denoising process and the higher order spectra to increase the accuracy and speed of the fault severity and type detection. The main approach is to use statistical features without using any dimension reduction and data training. To eliminate unrelated components from faulty condition, the best combination of denoising parameters based on the wavelet transform, is determined by a proposed performance index. In order to enhance the efficiency of the EEMD algorithm, a systematic method is presented to determine the proper amplitude of the additive noise and the Intrinsic Mode Functions (IMFs) selection scheme. The fault occurrence detection and the fault severity level identification are performed by the Fault Severity Index (FSI) definition based on the energy level of the Combined Fault-Sensitive IMF (CFSIMF) envelope using the central limit theorem. Also, taking the advantages of a bispectrum analysis of CFSIMF envelope, fault type recognition can be achieved by Fault Type Index (FTI) quantification. Finally, the proposed method is validated using experimental data set from two different test rigs. Also, the role of the optimum denoising process and the algorithm of systematic selection of the EEMD parameters are described regardless of its type and estimating the consistent degradation pattern. [Display omitted] •Approximate entropy and mutual information are employed to improve EEMD.•Fault Severity Index is performed based on the energy level of CFSIMF envelope.•Using bispectrum of CFSIMF envelope, fault type diagnosis can be achieved.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30268438</pmid><doi>10.1016/j.isatra.2018.09.008</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2018-12, Vol.83, p.261-275
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2115278147
source Elsevier ScienceDirect Journals Complete
subjects Bearing fault diagnosis
Denoising
Ensemble empirical mode decomposition
Higher order spectra
title Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20diagnosis%20for%20bearing%20faults%20by%20improving%20ensemble%20empirical%20mode%20decomposition&rft.jtitle=ISA%20transactions&rft.au=Hoseinzadeh,%20Mohammad%20Sadegh&rft.date=2018-12&rft.volume=83&rft.spage=261&rft.epage=275&rft.pages=261-275&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2018.09.008&rft_dat=%3Cproquest_cross%3E2115278147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115278147&rft_id=info:pmid/30268438&rft_els_id=S0019057818303379&rfr_iscdi=true