De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production

Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2019-01, Vol.249 (1), p.251-256
Hauptverfasser: Malli, Radesh P. N., Adal, Ayelign M., Sarker, Lukman S., Liang, Ping, Mahmoud, Soheil S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 1
container_start_page 251
container_title Planta
container_volume 249
creator Malli, Radesh P. N.
Adal, Ayelign M.
Sarker, Lukman S.
Liang, Ping
Mahmoud, Soheil S.
description Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (> 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.
doi_str_mv 10.1007/s00425-018-3012-9
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2115273705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48701783</jstor_id><sourcerecordid>48701783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-1fe70d6a6e1e828986dd80877746b1edea4eadcc3fa1d0ee81c25e69f7a7efa83</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCB-AAssSll8DYTmLniMq_Siv1Us6RG4-zXiX2YjsrlTvfu16lFIkDF9uj-b03Yz1C3jD4wADkxwRQ86YCpioBjFfdM7JhteAVh1o9JxuA8oZONGfkPKU9QGlK-ZKcCeBtxzq-Ib8_I_XhGGjCnwv6wfmRBkvzDulWH7U3y6Sp9uOSsrNhcpqO6MOMNOIR9ZTozo276Z6a5TC5QWc0hTY0HLKb3a9SWdR5iZioDZFiSuiz0xMNbqKHGMwyZBf8K_LCFjN8_XhfkB9fv9xefa-2N9-urz5tq6EsnitmUYJpdYsMFVedao1RoKSUdXvH0KCuUZthEFYzA4iKDbzBtrNSS7RaiQtyufqW0eW7KfezSwNOk_YYltRzxhouhYSmoO__Qfdhib5sd6JEp8pRF4qt1BBDShFtf4hu1vG-Z9CfMurXjPqSUX_KqO-K5t2j83I3o3lS_AmlAHwFUmn5EePf0f9zfbuK9imH-GRaKwlMKiEeAHWcqNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113981134</pqid></control><display><type>article</type><title>De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Malli, Radesh P. N. ; Adal, Ayelign M. ; Sarker, Lukman S. ; Liang, Ping ; Mahmoud, Soheil S.</creator><creatorcontrib>Malli, Radesh P. N. ; Adal, Ayelign M. ; Sarker, Lukman S. ; Liang, Ping ; Mahmoud, Soheil S.</creatorcontrib><description>Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (&gt; 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-018-3012-9</identifier><identifier>PMID: 30269192</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Assembly ; Biological activity ; Biomedical and Life Sciences ; Constituents ; Copy number ; Ecology ; Economic importance ; Essential oils ; Forestry ; Gene sequencing ; Genes ; Genetic markers ; Genomes ; Lavandula ; Lavandula - genetics ; Lavandula - metabolism ; Life Sciences ; Metabolism ; Monoterpenes ; Oils &amp; fats ; Oils, Volatile - metabolism ; ORIGINAL ARTICLE ; Personal hygiene ; Pharmaceutical industry ; Plant breeding ; Plant Sciences ; Polyploidy ; Proteins ; Reductase ; Reproduction (copying) ; Ribonucleic acid ; RNA ; Terpene synthase ; Terpenes - metabolism ; Terpenes and Isoprenoids</subject><ispartof>Planta, 2019-01, Vol.249 (1), p.251-256</ispartof><rights>The Author(s) 2018</rights><rights>Planta is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-1fe70d6a6e1e828986dd80877746b1edea4eadcc3fa1d0ee81c25e69f7a7efa83</citedby><cites>FETCH-LOGICAL-c437t-1fe70d6a6e1e828986dd80877746b1edea4eadcc3fa1d0ee81c25e69f7a7efa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48701783$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48701783$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30269192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malli, Radesh P. N.</creatorcontrib><creatorcontrib>Adal, Ayelign M.</creatorcontrib><creatorcontrib>Sarker, Lukman S.</creatorcontrib><creatorcontrib>Liang, Ping</creatorcontrib><creatorcontrib>Mahmoud, Soheil S.</creatorcontrib><title>De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (&gt; 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.</description><subject>Agriculture</subject><subject>Assembly</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Constituents</subject><subject>Copy number</subject><subject>Ecology</subject><subject>Economic importance</subject><subject>Essential oils</subject><subject>Forestry</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic markers</subject><subject>Genomes</subject><subject>Lavandula</subject><subject>Lavandula - genetics</subject><subject>Lavandula - metabolism</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Monoterpenes</subject><subject>Oils &amp; fats</subject><subject>Oils, Volatile - metabolism</subject><subject>ORIGINAL ARTICLE</subject><subject>Personal hygiene</subject><subject>Pharmaceutical industry</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Polyploidy</subject><subject>Proteins</subject><subject>Reductase</subject><subject>Reproduction (copying)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Terpene synthase</subject><subject>Terpenes - metabolism</subject><subject>Terpenes and Isoprenoids</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxS0EotvCB-AAssSll8DYTmLniMq_Siv1Us6RG4-zXiX2YjsrlTvfu16lFIkDF9uj-b03Yz1C3jD4wADkxwRQ86YCpioBjFfdM7JhteAVh1o9JxuA8oZONGfkPKU9QGlK-ZKcCeBtxzq-Ib8_I_XhGGjCnwv6wfmRBkvzDulWH7U3y6Sp9uOSsrNhcpqO6MOMNOIR9ZTozo276Z6a5TC5QWc0hTY0HLKb3a9SWdR5iZioDZFiSuiz0xMNbqKHGMwyZBf8K_LCFjN8_XhfkB9fv9xefa-2N9-urz5tq6EsnitmUYJpdYsMFVedao1RoKSUdXvH0KCuUZthEFYzA4iKDbzBtrNSS7RaiQtyufqW0eW7KfezSwNOk_YYltRzxhouhYSmoO__Qfdhib5sd6JEp8pRF4qt1BBDShFtf4hu1vG-Z9CfMurXjPqSUX_KqO-K5t2j83I3o3lS_AmlAHwFUmn5EePf0f9zfbuK9imH-GRaKwlMKiEeAHWcqNk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Malli, Radesh P. N.</creator><creator>Adal, Ayelign M.</creator><creator>Sarker, Lukman S.</creator><creator>Liang, Ping</creator><creator>Mahmoud, Soheil S.</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190101</creationdate><title>De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production</title><author>Malli, Radesh P. N. ; Adal, Ayelign M. ; Sarker, Lukman S. ; Liang, Ping ; Mahmoud, Soheil S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-1fe70d6a6e1e828986dd80877746b1edea4eadcc3fa1d0ee81c25e69f7a7efa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Assembly</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Constituents</topic><topic>Copy number</topic><topic>Ecology</topic><topic>Economic importance</topic><topic>Essential oils</topic><topic>Forestry</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic markers</topic><topic>Genomes</topic><topic>Lavandula</topic><topic>Lavandula - genetics</topic><topic>Lavandula - metabolism</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Monoterpenes</topic><topic>Oils &amp; fats</topic><topic>Oils, Volatile - metabolism</topic><topic>ORIGINAL ARTICLE</topic><topic>Personal hygiene</topic><topic>Pharmaceutical industry</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Polyploidy</topic><topic>Proteins</topic><topic>Reductase</topic><topic>Reproduction (copying)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Terpene synthase</topic><topic>Terpenes - metabolism</topic><topic>Terpenes and Isoprenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malli, Radesh P. N.</creatorcontrib><creatorcontrib>Adal, Ayelign M.</creatorcontrib><creatorcontrib>Sarker, Lukman S.</creatorcontrib><creatorcontrib>Liang, Ping</creatorcontrib><creatorcontrib>Mahmoud, Soheil S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malli, Radesh P. N.</au><au>Adal, Ayelign M.</au><au>Sarker, Lukman S.</au><au>Liang, Ping</au><au>Mahmoud, Soheil S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>249</volume><issue>1</issue><spage>251</spage><epage>256</epage><pages>251-256</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (&gt; 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>30269192</pmid><doi>10.1007/s00425-018-3012-9</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2019-01, Vol.249 (1), p.251-256
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2115273705
source Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Assembly
Biological activity
Biomedical and Life Sciences
Constituents
Copy number
Ecology
Economic importance
Essential oils
Forestry
Gene sequencing
Genes
Genetic markers
Genomes
Lavandula
Lavandula - genetics
Lavandula - metabolism
Life Sciences
Metabolism
Monoterpenes
Oils & fats
Oils, Volatile - metabolism
ORIGINAL ARTICLE
Personal hygiene
Pharmaceutical industry
Plant breeding
Plant Sciences
Polyploidy
Proteins
Reductase
Reproduction (copying)
Ribonucleic acid
RNA
Terpene synthase
Terpenes - metabolism
Terpenes and Isoprenoids
title De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20novo%20sequencing%20of%20the%20Lavandula%20angustifolia%20genome%20reveals%20highly%20duplicated%20and%20optimized%20features%20for%20essential%20oil%20production&rft.jtitle=Planta&rft.au=Malli,%20Radesh%20P.%20N.&rft.date=2019-01-01&rft.volume=249&rft.issue=1&rft.spage=251&rft.epage=256&rft.pages=251-256&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-018-3012-9&rft_dat=%3Cjstor_proqu%3E48701783%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113981134&rft_id=info:pmid/30269192&rft_jstor_id=48701783&rfr_iscdi=true