Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model

Massive open online courses (MOOCs) are increasingly popular among students of various ages and at universities around the world. The main aim of a MOOC is growth in students’ proficiency. That is why students, professors, and universities are interested in the accurate measurement of growth. Tradit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2019-02, Vol.51 (1), p.332-341
Hauptverfasser: Abbakumov, Dmitry, Desmet, Piet, Van den Noortgate, Wim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue 1
container_start_page 332
container_title Behavior Research Methods
container_volume 51
creator Abbakumov, Dmitry
Desmet, Piet
Van den Noortgate, Wim
description Massive open online courses (MOOCs) are increasingly popular among students of various ages and at universities around the world. The main aim of a MOOC is growth in students’ proficiency. That is why students, professors, and universities are interested in the accurate measurement of growth. Traditional psychometric approaches based on item response theory (IRT) assume that a student’s proficiency is constant over time, and therefore are not well suited for measuring growth. In this study we sought to go beyond this assumption, by (a) proposing to measure two components of growth in proficiency in MOOCs; (b) applying this idea in two dynamic extensions of the most common IRT model, the Rasch model; (c) illustrating these extensions through analyses of logged data from three MOOCs; and (d) checking the quality of the extensions using a cross-validation procedure. We found that proficiency grows both across whole courses and within learning objectives. In addition, our dynamic extensions fit the data better than does the original Rasch model, and both extensions performed well, with an average accuracy of .763 in predicting students’ responses from real MOOCs.
doi_str_mv 10.3758/s13428-018-1129-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2114707856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714174355</galeid><sourcerecordid>A714174355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-f9cc632e6aed9981746916dfa901b4d6db22621e7f2e9599ac0400e0d29601953</originalsourceid><addsrcrecordid>eNp1kUFvFCEYhidGY2v1B3gxJF68TMvHMMzgrdmobdJmE1PPhIVvdtnMwAozqXvzb_j3_CUymaqNieEAgeclLzxF8RroedXU7UWCirO2pNCWAEyW8KQ4hbrmZVWz9umj9UnxIqU9pVXLgD8vTirKBK9Ec1rsb1GnKTq_JdsY7scdcZ6kcbLox_Tz-w9yiKFzxqE3x_nodr1epffk7j4QE4ZD8Jkj9uj14AzBbyP65IJPpAuRjDskn3UyOzIEi_3L4lmn-4SvHuaz4svHD3erq_Jm_el6dXlTGt6yseykMaJiKDRaKVtouJAgbKclhQ23wm4YEwyw6RjKWkptKKcUqWVSUJB1dVa8W-7N1b9OmEY1uGSw77XHMCXFAHhDm7YWGX37D7oPU_S5XaYktHWTsUydL9RW96ic78IYtcnDYn51_oLO5f3LBnguW9VzAJaAiSGliJ06RDfoeFRA1WxOLeZUNqdmcwpy5s1DlWkzoP2T-K0qA2wB0mHWhfFv1__f-gty06OX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191857785</pqid></control><display><type>article</type><title>Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model</title><source>SpringerLink Journals</source><creator>Abbakumov, Dmitry ; Desmet, Piet ; Van den Noortgate, Wim</creator><creatorcontrib>Abbakumov, Dmitry ; Desmet, Piet ; Van den Noortgate, Wim</creatorcontrib><description>Massive open online courses (MOOCs) are increasingly popular among students of various ages and at universities around the world. The main aim of a MOOC is growth in students’ proficiency. That is why students, professors, and universities are interested in the accurate measurement of growth. Traditional psychometric approaches based on item response theory (IRT) assume that a student’s proficiency is constant over time, and therefore are not well suited for measuring growth. In this study we sought to go beyond this assumption, by (a) proposing to measure two components of growth in proficiency in MOOCs; (b) applying this idea in two dynamic extensions of the most common IRT model, the Rasch model; (c) illustrating these extensions through analyses of logged data from three MOOCs; and (d) checking the quality of the extensions using a cross-validation procedure. We found that proficiency grows both across whole courses and within learning objectives. In addition, our dynamic extensions fit the data better than does the original Rasch model, and both extensions performed well, with an average accuracy of .763 in predicting students’ responses from real MOOCs.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-018-1129-1</identifier><identifier>PMID: 30264367</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Behavioral Science and Psychology ; Cognitive Psychology ; Colleges &amp; universities ; Data processing ; Item response theory ; Massive open online courses ; Measurement ; Online education ; Online instruction ; Psychology ; Rasch model ; Students</subject><ispartof>Behavior Research Methods, 2019-02, Vol.51 (1), p.332-341</ispartof><rights>Psychonomic Society, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-f9cc632e6aed9981746916dfa901b4d6db22621e7f2e9599ac0400e0d29601953</citedby><cites>FETCH-LOGICAL-c482t-f9cc632e6aed9981746916dfa901b4d6db22621e7f2e9599ac0400e0d29601953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-018-1129-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-018-1129-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30264367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbakumov, Dmitry</creatorcontrib><creatorcontrib>Desmet, Piet</creatorcontrib><creatorcontrib>Van den Noortgate, Wim</creatorcontrib><title>Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Massive open online courses (MOOCs) are increasingly popular among students of various ages and at universities around the world. The main aim of a MOOC is growth in students’ proficiency. That is why students, professors, and universities are interested in the accurate measurement of growth. Traditional psychometric approaches based on item response theory (IRT) assume that a student’s proficiency is constant over time, and therefore are not well suited for measuring growth. In this study we sought to go beyond this assumption, by (a) proposing to measure two components of growth in proficiency in MOOCs; (b) applying this idea in two dynamic extensions of the most common IRT model, the Rasch model; (c) illustrating these extensions through analyses of logged data from three MOOCs; and (d) checking the quality of the extensions using a cross-validation procedure. We found that proficiency grows both across whole courses and within learning objectives. In addition, our dynamic extensions fit the data better than does the original Rasch model, and both extensions performed well, with an average accuracy of .763 in predicting students’ responses from real MOOCs.</description><subject>Analysis</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Colleges &amp; universities</subject><subject>Data processing</subject><subject>Item response theory</subject><subject>Massive open online courses</subject><subject>Measurement</subject><subject>Online education</subject><subject>Online instruction</subject><subject>Psychology</subject><subject>Rasch model</subject><subject>Students</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvFCEYhidGY2v1B3gxJF68TMvHMMzgrdmobdJmE1PPhIVvdtnMwAozqXvzb_j3_CUymaqNieEAgeclLzxF8RroedXU7UWCirO2pNCWAEyW8KQ4hbrmZVWz9umj9UnxIqU9pVXLgD8vTirKBK9Ec1rsb1GnKTq_JdsY7scdcZ6kcbLox_Tz-w9yiKFzxqE3x_nodr1epffk7j4QE4ZD8Jkj9uj14AzBbyP65IJPpAuRjDskn3UyOzIEi_3L4lmn-4SvHuaz4svHD3erq_Jm_el6dXlTGt6yseykMaJiKDRaKVtouJAgbKclhQ23wm4YEwyw6RjKWkptKKcUqWVSUJB1dVa8W-7N1b9OmEY1uGSw77XHMCXFAHhDm7YWGX37D7oPU_S5XaYktHWTsUydL9RW96ic78IYtcnDYn51_oLO5f3LBnguW9VzAJaAiSGliJ06RDfoeFRA1WxOLeZUNqdmcwpy5s1DlWkzoP2T-K0qA2wB0mHWhfFv1__f-gty06OX</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Abbakumov, Dmitry</creator><creator>Desmet, Piet</creator><creator>Van den Noortgate, Wim</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20190215</creationdate><title>Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model</title><author>Abbakumov, Dmitry ; Desmet, Piet ; Van den Noortgate, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-f9cc632e6aed9981746916dfa901b4d6db22621e7f2e9599ac0400e0d29601953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Colleges &amp; universities</topic><topic>Data processing</topic><topic>Item response theory</topic><topic>Massive open online courses</topic><topic>Measurement</topic><topic>Online education</topic><topic>Online instruction</topic><topic>Psychology</topic><topic>Rasch model</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbakumov, Dmitry</creatorcontrib><creatorcontrib>Desmet, Piet</creatorcontrib><creatorcontrib>Van den Noortgate, Wim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbakumov, Dmitry</au><au>Desmet, Piet</au><au>Van den Noortgate, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2019-02-15</date><risdate>2019</risdate><volume>51</volume><issue>1</issue><spage>332</spage><epage>341</epage><pages>332-341</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Massive open online courses (MOOCs) are increasingly popular among students of various ages and at universities around the world. The main aim of a MOOC is growth in students’ proficiency. That is why students, professors, and universities are interested in the accurate measurement of growth. Traditional psychometric approaches based on item response theory (IRT) assume that a student’s proficiency is constant over time, and therefore are not well suited for measuring growth. In this study we sought to go beyond this assumption, by (a) proposing to measure two components of growth in proficiency in MOOCs; (b) applying this idea in two dynamic extensions of the most common IRT model, the Rasch model; (c) illustrating these extensions through analyses of logged data from three MOOCs; and (d) checking the quality of the extensions using a cross-validation procedure. We found that proficiency grows both across whole courses and within learning objectives. In addition, our dynamic extensions fit the data better than does the original Rasch model, and both extensions performed well, with an average accuracy of .763 in predicting students’ responses from real MOOCs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30264367</pmid><doi>10.3758/s13428-018-1129-1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior Research Methods, 2019-02, Vol.51 (1), p.332-341
issn 1554-3528
1554-3528
language eng
recordid cdi_proquest_miscellaneous_2114707856
source SpringerLink Journals
subjects Analysis
Behavioral Science and Psychology
Cognitive Psychology
Colleges & universities
Data processing
Item response theory
Massive open online courses
Measurement
Online education
Online instruction
Psychology
Rasch model
Students
title Measuring growth in students’ proficiency in MOOCs: Two component dynamic extensions for the Rasch model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20growth%20in%20students%E2%80%99%20proficiency%20in%20MOOCs:%20Two%20component%20dynamic%20extensions%20for%20the%20Rasch%20model&rft.jtitle=Behavior%20Research%20Methods&rft.au=Abbakumov,%20Dmitry&rft.date=2019-02-15&rft.volume=51&rft.issue=1&rft.spage=332&rft.epage=341&rft.pages=332-341&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-018-1129-1&rft_dat=%3Cgale_proqu%3EA714174355%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191857785&rft_id=info:pmid/30264367&rft_galeid=A714174355&rfr_iscdi=true