Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor

Although octacalcium phosphate (OCP) powder and a collagen/gelatin composite demonstrate good potential as bone substitutes, an OCP block has not been fabricated to date. In this study, the feasibility of fabricating an OCP block was evaluated through a dissolution-precipitation reaction using a cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2018-10, Vol.29 (10), p.151-8, Article 151
Hauptverfasser: Sugiura, Yuki, Munar, Melvin L., Ishikawa, Kunio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 10
container_start_page 151
container_title Journal of materials science. Materials in medicine
container_volume 29
creator Sugiura, Yuki
Munar, Melvin L.
Ishikawa, Kunio
description Although octacalcium phosphate (OCP) powder and a collagen/gelatin composite demonstrate good potential as bone substitutes, an OCP block has not been fabricated to date. In this study, the feasibility of fabricating an OCP block was evaluated through a dissolution-precipitation reaction using a calcium sulfate hemihydrate (CSH) block as a precursor. When the block was immersed in a phosphate salt solution, its composition changed to that of OCP, while its structure was maintained. The diametral tensile strength (DTS) of the OCP block was 1.0 ± 0.2 MPa. The macroporosity and microporosity of the OCP block were 33.4 ± 4.5% and, 69.0 ± 1.6%, respectively. New bone attached well to the OCP block, and this block was partially replaced by bone 2 weeks after implantation. Four weeks after implantation, the surface of the OCP block was nearly covered with new bone and ~30% of the block was replaced by new bone, while no replacement by bone was observed in the case of a hydroxyapatite (HAp) block used as a control. It is concluded that OCP blocks are potentially suitable for their use as artificial bone substitutes.
doi_str_mv 10.1007/s10856-018-6162-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2114707538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114707538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-16049962a5cb611797d7529b6b85247bebc45e81f6cb953f5d864d86109069883</originalsourceid><addsrcrecordid>eNp1kU9v1yAch4nRuJ-bL8CLaeLFC45vKX96NMumS5Z42c4EKP2V2ZYK5bCXsXcstZtLTDwQSHg-D38-CH0A8gUIEecJiGQcE5CYA68xvEIHYILiRlL5Gh1IywRuGCUn6F1K94SQpmXsLTqhpOYNcHFAj1faRG_16sNchb4KdtVWj9bnqVqGkJZBr64yY7A_q3WIIR-HSledTymMeQvhJTrrF7_uiui0_bPIyc_Hgj7LUh531-AmPzx08cWrU-E2TY4pxDP0ptdjcu-f5lN0d3V5e_Ed3_z4dn3x9QZbKuoVAy-PaXmtmTUcQLSiE6xuDTeS1Y0wztiGOQk9t6ZltGed5E0ZQFrCWynpKfq8e5cYfmWXVjX5ZN046tmFnFQN0AgiGN3QT_-g9yHHudxuoyiR5Ts3CnbKxpBSdL1aop90fFBA1NaX2vtSpS-19aWgZD4-mbOZXPc38VxQAeodSGVrPrr4cvT_rb8Be2mh_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113080268</pqid></control><display><type>article</type><title>Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Sugiura, Yuki ; Munar, Melvin L. ; Ishikawa, Kunio</creator><creatorcontrib>Sugiura, Yuki ; Munar, Melvin L. ; Ishikawa, Kunio</creatorcontrib><description>Although octacalcium phosphate (OCP) powder and a collagen/gelatin composite demonstrate good potential as bone substitutes, an OCP block has not been fabricated to date. In this study, the feasibility of fabricating an OCP block was evaluated through a dissolution-precipitation reaction using a calcium sulfate hemihydrate (CSH) block as a precursor. When the block was immersed in a phosphate salt solution, its composition changed to that of OCP, while its structure was maintained. The diametral tensile strength (DTS) of the OCP block was 1.0 ± 0.2 MPa. The macroporosity and microporosity of the OCP block were 33.4 ± 4.5% and, 69.0 ± 1.6%, respectively. New bone attached well to the OCP block, and this block was partially replaced by bone 2 weeks after implantation. Four weeks after implantation, the surface of the OCP block was nearly covered with new bone and ~30% of the block was replaced by new bone, while no replacement by bone was observed in the case of a hydroxyapatite (HAp) block used as a control. It is concluded that OCP blocks are potentially suitable for their use as artificial bone substitutes.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-018-6162-1</identifier><identifier>PMID: 30264167</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Bone biomaterials ; Bone Regeneration ; Bone Substitutes - chemistry ; Calcium ; Calcium phosphates ; Calcium Phosphates - chemistry ; Calcium sulfate ; Calcium Sulfate - chemistry ; Calcium sulfate hemihydrate ; Ceramics ; Chemical precipitation ; Chemistry and Materials Science ; Collagen ; Collagen - chemistry ; Composites ; Dissolution ; Durapatite - chemistry ; Fabrication ; Feasibility Studies ; Gelatin ; Glass ; Hydroxyapatite ; Implantation ; Macroporosity ; Male ; Materials Science ; Microporosity ; Natural Materials ; Octacalcium phosphate ; Osteogenesis ; Polymer Sciences ; Powder ; Precursors ; Rabbits ; Regenerative Medicine/Tissue Engineering ; Saline solutions ; Solubility ; Substitute bone ; Surfaces and Interfaces ; Surgical implants ; Tensile Strength ; Thin Films</subject><ispartof>Journal of materials science. Materials in medicine, 2018-10, Vol.29 (10), p.151-8, Article 151</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Medicine is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-16049962a5cb611797d7529b6b85247bebc45e81f6cb953f5d864d86109069883</citedby><cites>FETCH-LOGICAL-c372t-16049962a5cb611797d7529b6b85247bebc45e81f6cb953f5d864d86109069883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-018-6162-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-018-6162-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30264167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugiura, Yuki</creatorcontrib><creatorcontrib>Munar, Melvin L.</creatorcontrib><creatorcontrib>Ishikawa, Kunio</creatorcontrib><title>Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Although octacalcium phosphate (OCP) powder and a collagen/gelatin composite demonstrate good potential as bone substitutes, an OCP block has not been fabricated to date. In this study, the feasibility of fabricating an OCP block was evaluated through a dissolution-precipitation reaction using a calcium sulfate hemihydrate (CSH) block as a precursor. When the block was immersed in a phosphate salt solution, its composition changed to that of OCP, while its structure was maintained. The diametral tensile strength (DTS) of the OCP block was 1.0 ± 0.2 MPa. The macroporosity and microporosity of the OCP block were 33.4 ± 4.5% and, 69.0 ± 1.6%, respectively. New bone attached well to the OCP block, and this block was partially replaced by bone 2 weeks after implantation. Four weeks after implantation, the surface of the OCP block was nearly covered with new bone and ~30% of the block was replaced by new bone, while no replacement by bone was observed in the case of a hydroxyapatite (HAp) block used as a control. It is concluded that OCP blocks are potentially suitable for their use as artificial bone substitutes.</description><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone Regeneration</subject><subject>Bone Substitutes - chemistry</subject><subject>Calcium</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium sulfate</subject><subject>Calcium Sulfate - chemistry</subject><subject>Calcium sulfate hemihydrate</subject><subject>Ceramics</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Composites</subject><subject>Dissolution</subject><subject>Durapatite - chemistry</subject><subject>Fabrication</subject><subject>Feasibility Studies</subject><subject>Gelatin</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>Implantation</subject><subject>Macroporosity</subject><subject>Male</subject><subject>Materials Science</subject><subject>Microporosity</subject><subject>Natural Materials</subject><subject>Octacalcium phosphate</subject><subject>Osteogenesis</subject><subject>Polymer Sciences</subject><subject>Powder</subject><subject>Precursors</subject><subject>Rabbits</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Saline solutions</subject><subject>Solubility</subject><subject>Substitute bone</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Tensile Strength</subject><subject>Thin Films</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9v1yAch4nRuJ-bL8CLaeLFC45vKX96NMumS5Z42c4EKP2V2ZYK5bCXsXcstZtLTDwQSHg-D38-CH0A8gUIEecJiGQcE5CYA68xvEIHYILiRlL5Gh1IywRuGCUn6F1K94SQpmXsLTqhpOYNcHFAj1faRG_16sNchb4KdtVWj9bnqVqGkJZBr64yY7A_q3WIIR-HSledTymMeQvhJTrrF7_uiui0_bPIyc_Hgj7LUh531-AmPzx08cWrU-E2TY4pxDP0ptdjcu-f5lN0d3V5e_Ed3_z4dn3x9QZbKuoVAy-PaXmtmTUcQLSiE6xuDTeS1Y0wztiGOQk9t6ZltGed5E0ZQFrCWynpKfq8e5cYfmWXVjX5ZN046tmFnFQN0AgiGN3QT_-g9yHHudxuoyiR5Ts3CnbKxpBSdL1aop90fFBA1NaX2vtSpS-19aWgZD4-mbOZXPc38VxQAeodSGVrPrr4cvT_rb8Be2mh_g</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Sugiura, Yuki</creator><creator>Munar, Melvin L.</creator><creator>Ishikawa, Kunio</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20181001</creationdate><title>Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor</title><author>Sugiura, Yuki ; Munar, Melvin L. ; Ishikawa, Kunio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-16049962a5cb611797d7529b6b85247bebc45e81f6cb953f5d864d86109069883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone Regeneration</topic><topic>Bone Substitutes - chemistry</topic><topic>Calcium</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium sulfate</topic><topic>Calcium Sulfate - chemistry</topic><topic>Calcium sulfate hemihydrate</topic><topic>Ceramics</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Composites</topic><topic>Dissolution</topic><topic>Durapatite - chemistry</topic><topic>Fabrication</topic><topic>Feasibility Studies</topic><topic>Gelatin</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>Implantation</topic><topic>Macroporosity</topic><topic>Male</topic><topic>Materials Science</topic><topic>Microporosity</topic><topic>Natural Materials</topic><topic>Octacalcium phosphate</topic><topic>Osteogenesis</topic><topic>Polymer Sciences</topic><topic>Powder</topic><topic>Precursors</topic><topic>Rabbits</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Saline solutions</topic><topic>Solubility</topic><topic>Substitute bone</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Tensile Strength</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugiura, Yuki</creatorcontrib><creatorcontrib>Munar, Melvin L.</creatorcontrib><creatorcontrib>Ishikawa, Kunio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugiura, Yuki</au><au>Munar, Melvin L.</au><au>Ishikawa, Kunio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>10</issue><spage>151</spage><epage>8</epage><pages>151-8</pages><artnum>151</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Although octacalcium phosphate (OCP) powder and a collagen/gelatin composite demonstrate good potential as bone substitutes, an OCP block has not been fabricated to date. In this study, the feasibility of fabricating an OCP block was evaluated through a dissolution-precipitation reaction using a calcium sulfate hemihydrate (CSH) block as a precursor. When the block was immersed in a phosphate salt solution, its composition changed to that of OCP, while its structure was maintained. The diametral tensile strength (DTS) of the OCP block was 1.0 ± 0.2 MPa. The macroporosity and microporosity of the OCP block were 33.4 ± 4.5% and, 69.0 ± 1.6%, respectively. New bone attached well to the OCP block, and this block was partially replaced by bone 2 weeks after implantation. Four weeks after implantation, the surface of the OCP block was nearly covered with new bone and ~30% of the block was replaced by new bone, while no replacement by bone was observed in the case of a hydroxyapatite (HAp) block used as a control. It is concluded that OCP blocks are potentially suitable for their use as artificial bone substitutes.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30264167</pmid><doi>10.1007/s10856-018-6162-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2018-10, Vol.29 (10), p.151-8, Article 151
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_2114707538
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biomaterials
Biomaterials Synthesis and Characterization
Biomedical Engineering and Bioengineering
Biomedical materials
Bone biomaterials
Bone Regeneration
Bone Substitutes - chemistry
Calcium
Calcium phosphates
Calcium Phosphates - chemistry
Calcium sulfate
Calcium Sulfate - chemistry
Calcium sulfate hemihydrate
Ceramics
Chemical precipitation
Chemistry and Materials Science
Collagen
Collagen - chemistry
Composites
Dissolution
Durapatite - chemistry
Fabrication
Feasibility Studies
Gelatin
Glass
Hydroxyapatite
Implantation
Macroporosity
Male
Materials Science
Microporosity
Natural Materials
Octacalcium phosphate
Osteogenesis
Polymer Sciences
Powder
Precursors
Rabbits
Regenerative Medicine/Tissue Engineering
Saline solutions
Solubility
Substitute bone
Surfaces and Interfaces
Surgical implants
Tensile Strength
Thin Films
title Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20octacalcium%20phosphate%20block%20through%20a%20dissolution-precipitation%20reaction%20using%20a%20calcium%20sulphate%20hemihydrate%20block%20as%20a%20precursor&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Sugiura,%20Yuki&rft.date=2018-10-01&rft.volume=29&rft.issue=10&rft.spage=151&rft.epage=8&rft.pages=151-8&rft.artnum=151&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-018-6162-1&rft_dat=%3Cproquest_cross%3E2114707538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113080268&rft_id=info:pmid/30264167&rfr_iscdi=true