Towards quantitative and multiplexed in vivo functional cancer genomics
Large-scale sequencing of human tumours has uncovered a vast array of genomic alterations. Genetically engineered mouse models recapitulate many features of human cancer and have been instrumental in assigning biological meaning to specific cancer-associated alterations. However, their time, cost an...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Genetics 2018-12, Vol.19 (12), p.741-755 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 755 |
---|---|
container_issue | 12 |
container_start_page | 741 |
container_title | Nature reviews. Genetics |
container_volume | 19 |
creator | Winters, Ian P. Murray, Christopher W. Winslow, Monte M. |
description | Large-scale sequencing of human tumours has uncovered a vast array of genomic alterations. Genetically engineered mouse models recapitulate many features of human cancer and have been instrumental in assigning biological meaning to specific cancer-associated alterations. However, their time, cost and labour-intensive nature limits their broad utility; thus, the functional importance of the majority of genomic aberrations in cancer remains unknown. Recent advances have accelerated the functional interrogation of cancer-associated alterations within in vivo models. Specifically, the past few years have seen the emergence of CRISPR–Cas9-based strategies to rapidly generate increasingly complex somatic alterations and the development of multiplexed and quantitative approaches to ascertain gene function in vivo.
CRISPR–Cas genome editing and next-generation sequencing are driving advances in cancer modelling and functional cancer genomics. Their application to autochthonous mouse models of human cancer to generate and analyse multiplexed and/or combinatorial alterations in vivo is reviewed here. |
doi_str_mv | 10.1038/s41576-018-0053-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2114695553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573157066</galeid><sourcerecordid>A573157066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-2d4edd15850b5357752e4015cc2ed02a7d8668fbadd4d126fee427f0aca9c1a23</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoNYbK3-ADcyIBQ3U_OductSbBUKbtp1yE3O3KZkktskc6v_3gy3Hyq4SkKe83LOeRD6QPApwWz4UjgRSvaYDD3GgvXqFToiXJH2kvz1813IQ_S2lDuMiSSKvUGHDFOpMCNH6PI6PZjsSnc_m1h9NdXvoDPRddMcqt8G-Amu87Hb-V3qxjna6lM0obMmWsjdBmKavC3v0MFoQoH3j-cxurn4en3-rb_6cfn9_Oyqt3ylak8dB-eIGAReCyaUEhQ4JsJaCg5To9wg5TCujXPcESpHAE7ViI01K0sMZcfo8z53m9P9DKXqyRcLIZgIaS6aEsLlSgjBGvrpH_Quzbn1vlCMDYw39IXamADaxzHVbOwSqs-EYm3BWC7UyR_ULZhQb0sK87KM8jdI9qDNqZQMo95mP5n8SxOsF2l6L003aXqRplWr-fjY6LyewD1XPFlqAN0DpX3FDeSXSf6f-htRsJ-m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133834146</pqid></control><display><type>article</type><title>Towards quantitative and multiplexed in vivo functional cancer genomics</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Winters, Ian P. ; Murray, Christopher W. ; Winslow, Monte M.</creator><creatorcontrib>Winters, Ian P. ; Murray, Christopher W. ; Winslow, Monte M.</creatorcontrib><description>Large-scale sequencing of human tumours has uncovered a vast array of genomic alterations. Genetically engineered mouse models recapitulate many features of human cancer and have been instrumental in assigning biological meaning to specific cancer-associated alterations. However, their time, cost and labour-intensive nature limits their broad utility; thus, the functional importance of the majority of genomic aberrations in cancer remains unknown. Recent advances have accelerated the functional interrogation of cancer-associated alterations within in vivo models. Specifically, the past few years have seen the emergence of CRISPR–Cas9-based strategies to rapidly generate increasingly complex somatic alterations and the development of multiplexed and quantitative approaches to ascertain gene function in vivo.
CRISPR–Cas genome editing and next-generation sequencing are driving advances in cancer modelling and functional cancer genomics. Their application to autochthonous mouse models of human cancer to generate and analyse multiplexed and/or combinatorial alterations in vivo is reviewed here.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-018-0053-7</identifier><identifier>PMID: 30267031</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1511 ; 631/1647/334/1874/345 ; 631/1647/767/70 ; 631/208/2489/144/68 ; 631/208/4041/3196 ; 631/208/69 ; Agriculture ; Animal Genetics and Genomics ; Animal models ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer genetics ; Cancer Research ; CRISPR ; Gene editing ; Gene Function ; Genes ; Genetic engineering ; Genetically modified organisms ; Genomes ; Genomics ; Human Genetics ; Review Article ; Tumors</subject><ispartof>Nature reviews. Genetics, 2018-12, Vol.19 (12), p.741-755</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-2d4edd15850b5357752e4015cc2ed02a7d8668fbadd4d126fee427f0aca9c1a23</citedby><cites>FETCH-LOGICAL-c497t-2d4edd15850b5357752e4015cc2ed02a7d8668fbadd4d126fee427f0aca9c1a23</cites><orcidid>0000-0002-3497-3228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-018-0053-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-018-0053-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30267031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winters, Ian P.</creatorcontrib><creatorcontrib>Murray, Christopher W.</creatorcontrib><creatorcontrib>Winslow, Monte M.</creatorcontrib><title>Towards quantitative and multiplexed in vivo functional cancer genomics</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Large-scale sequencing of human tumours has uncovered a vast array of genomic alterations. Genetically engineered mouse models recapitulate many features of human cancer and have been instrumental in assigning biological meaning to specific cancer-associated alterations. However, their time, cost and labour-intensive nature limits their broad utility; thus, the functional importance of the majority of genomic aberrations in cancer remains unknown. Recent advances have accelerated the functional interrogation of cancer-associated alterations within in vivo models. Specifically, the past few years have seen the emergence of CRISPR–Cas9-based strategies to rapidly generate increasingly complex somatic alterations and the development of multiplexed and quantitative approaches to ascertain gene function in vivo.
CRISPR–Cas genome editing and next-generation sequencing are driving advances in cancer modelling and functional cancer genomics. Their application to autochthonous mouse models of human cancer to generate and analyse multiplexed and/or combinatorial alterations in vivo is reviewed here.</description><subject>631/1647/1511</subject><subject>631/1647/334/1874/345</subject><subject>631/1647/767/70</subject><subject>631/208/2489/144/68</subject><subject>631/208/4041/3196</subject><subject>631/208/69</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animal models</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Cancer Research</subject><subject>CRISPR</subject><subject>Gene editing</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetically modified organisms</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Review Article</subject><subject>Tumors</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1rFTEUhoNYbK3-ADcyIBQ3U_OductSbBUKbtp1yE3O3KZkktskc6v_3gy3Hyq4SkKe83LOeRD6QPApwWz4UjgRSvaYDD3GgvXqFToiXJH2kvz1813IQ_S2lDuMiSSKvUGHDFOpMCNH6PI6PZjsSnc_m1h9NdXvoDPRddMcqt8G-Amu87Hb-V3qxjna6lM0obMmWsjdBmKavC3v0MFoQoH3j-cxurn4en3-rb_6cfn9_Oyqt3ylak8dB-eIGAReCyaUEhQ4JsJaCg5To9wg5TCujXPcESpHAE7ViI01K0sMZcfo8z53m9P9DKXqyRcLIZgIaS6aEsLlSgjBGvrpH_Quzbn1vlCMDYw39IXamADaxzHVbOwSqs-EYm3BWC7UyR_ULZhQb0sK87KM8jdI9qDNqZQMo95mP5n8SxOsF2l6L003aXqRplWr-fjY6LyewD1XPFlqAN0DpX3FDeSXSf6f-htRsJ-m</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Winters, Ian P.</creator><creator>Murray, Christopher W.</creator><creator>Winslow, Monte M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3497-3228</orcidid></search><sort><creationdate>20181201</creationdate><title>Towards quantitative and multiplexed in vivo functional cancer genomics</title><author>Winters, Ian P. ; Murray, Christopher W. ; Winslow, Monte M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-2d4edd15850b5357752e4015cc2ed02a7d8668fbadd4d126fee427f0aca9c1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/1647/1511</topic><topic>631/1647/334/1874/345</topic><topic>631/1647/767/70</topic><topic>631/208/2489/144/68</topic><topic>631/208/4041/3196</topic><topic>631/208/69</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animal models</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Cancer Research</topic><topic>CRISPR</topic><topic>Gene editing</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetically modified organisms</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Review Article</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winters, Ian P.</creatorcontrib><creatorcontrib>Murray, Christopher W.</creatorcontrib><creatorcontrib>Winslow, Monte M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winters, Ian P.</au><au>Murray, Christopher W.</au><au>Winslow, Monte M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards quantitative and multiplexed in vivo functional cancer genomics</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>19</volume><issue>12</issue><spage>741</spage><epage>755</epage><pages>741-755</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>Large-scale sequencing of human tumours has uncovered a vast array of genomic alterations. Genetically engineered mouse models recapitulate many features of human cancer and have been instrumental in assigning biological meaning to specific cancer-associated alterations. However, their time, cost and labour-intensive nature limits their broad utility; thus, the functional importance of the majority of genomic aberrations in cancer remains unknown. Recent advances have accelerated the functional interrogation of cancer-associated alterations within in vivo models. Specifically, the past few years have seen the emergence of CRISPR–Cas9-based strategies to rapidly generate increasingly complex somatic alterations and the development of multiplexed and quantitative approaches to ascertain gene function in vivo.
CRISPR–Cas genome editing and next-generation sequencing are driving advances in cancer modelling and functional cancer genomics. Their application to autochthonous mouse models of human cancer to generate and analyse multiplexed and/or combinatorial alterations in vivo is reviewed here.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30267031</pmid><doi>10.1038/s41576-018-0053-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3497-3228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0056 |
ispartof | Nature reviews. Genetics, 2018-12, Vol.19 (12), p.741-755 |
issn | 1471-0056 1471-0064 |
language | eng |
recordid | cdi_proquest_miscellaneous_2114695553 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 631/1647/1511 631/1647/334/1874/345 631/1647/767/70 631/208/2489/144/68 631/208/4041/3196 631/208/69 Agriculture Animal Genetics and Genomics Animal models Biomedical and Life Sciences Biomedicine Cancer Cancer genetics Cancer Research CRISPR Gene editing Gene Function Genes Genetic engineering Genetically modified organisms Genomes Genomics Human Genetics Review Article Tumors |
title | Towards quantitative and multiplexed in vivo functional cancer genomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20quantitative%20and%20multiplexed%20in%20vivo%20functional%20cancer%20genomics&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Winters,%20Ian%20P.&rft.date=2018-12-01&rft.volume=19&rft.issue=12&rft.spage=741&rft.epage=755&rft.pages=741-755&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-018-0053-7&rft_dat=%3Cgale_proqu%3EA573157066%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133834146&rft_id=info:pmid/30267031&rft_galeid=A573157066&rfr_iscdi=true |