Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method
•This paper uses the boundary integral method to model the motion of a cell through a viscous fluid.•The model can be used to simulate chemotaxis.•The results of the calculations are compared to some experimental data. In experiments clusters of cells are often observed to move in response to a chem...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2018-12, Vol.306, p.145-151 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | |
container_start_page | 145 |
container_title | Mathematical biosciences |
container_volume | 306 |
creator | Harris, Paul J. |
description | •This paper uses the boundary integral method to model the motion of a cell through a viscous fluid.•The model can be used to simulate chemotaxis.•The results of the calculations are compared to some experimental data.
In experiments clusters of cells are often observed to move in response to a chemical signal which is present in the fluid surrounding the cells. This process is known as chemotaxis. This paper presents a method for modelling the motion of clusters of cells moving through a viscous fluid in response to a known chemical signal using a boundary integral formulation of the governing equations rather than the more usual differential equation formulation. The numerical results presented in this paper show that the boundary integral method can be used to simulate the motion of cell clusters through the fluid. The results of the simulations are compared to some experimental observations of cell and cluster motion. |
doi_str_mv | 10.1016/j.mbs.2018.09.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2114692534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556417306028</els_id><sourcerecordid>2114692534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a63daf4c937bcb30d6b6c8fcc89a3cabf65c2603da2d3105455810860338d5e03</originalsourceid><addsrcrecordid>eNp9kDFP3TAUha2qCB6UH9ClstSlS9J749hJxFQhCkggFpgtx3bAT0lM7QSJf99LHzB0YLJlfefo-GPsK0KJgOrntpz6XFaAbQldCYif2AbbpisEivoz2wBUspBS1QfsMOctADaIap8dCKhU0wi1Yfo6Oj-OYb7ny4PnU1xCnHkcuB3XvPiU_92JyDzM3PCnkG1cMx_GNTi-5rdgH9fZmfRM1OLvkxn55JeH6L6wvcGM2R-_nkfs7vfZ7elFcXVzfnn666qwolFLYZRwZqhtJ5re9gKc6pVtB2vbzghr-kFJWykgqHICQdZStggtvYjWSQ_iiP3Y9T6m-Gf1edETLaXdZva0V1eIteoqKWpCv_-HbuOaZlpHlJKgRK2QKNxRNsWckx_0YwoT_VAj6Bf7eqvJvn6xr6HTZJ8y316b137y7j3xppuAkx3gScVT8ElnG_xsvQvJ20W7GD6o_ws_4JTO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165063461</pqid></control><display><type>article</type><title>Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Harris, Paul J.</creator><creatorcontrib>Harris, Paul J.</creatorcontrib><description>•This paper uses the boundary integral method to model the motion of a cell through a viscous fluid.•The model can be used to simulate chemotaxis.•The results of the calculations are compared to some experimental data.
In experiments clusters of cells are often observed to move in response to a chemical signal which is present in the fluid surrounding the cells. This process is known as chemotaxis. This paper presents a method for modelling the motion of clusters of cells moving through a viscous fluid in response to a known chemical signal using a boundary integral formulation of the governing equations rather than the more usual differential equation formulation. The numerical results presented in this paper show that the boundary integral method can be used to simulate the motion of cell clusters through the fluid. The results of the simulations are compared to some experimental observations of cell and cluster motion.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2018.09.011</identifier><identifier>PMID: 30267736</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Boundary integral method ; Cell Aggregation ; Cells ; Chemotaxis ; Chemotaxis - physiology ; Clusters ; Computer Simulation ; Culture Media ; Differential equations ; Humans ; Hydrodynamics ; Integrals ; Mathematical Concepts ; Mathematical modelling ; Mathematical models ; Models, Biological ; Organic chemistry ; Signal processing ; Stokes flow ; Viscosity ; Viscous fluids</subject><ispartof>Mathematical biosciences, 2018-12, Vol.306, p.145-151</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-a63daf4c937bcb30d6b6c8fcc89a3cabf65c2603da2d3105455810860338d5e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2018.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30267736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Paul J.</creatorcontrib><title>Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•This paper uses the boundary integral method to model the motion of a cell through a viscous fluid.•The model can be used to simulate chemotaxis.•The results of the calculations are compared to some experimental data.
In experiments clusters of cells are often observed to move in response to a chemical signal which is present in the fluid surrounding the cells. This process is known as chemotaxis. This paper presents a method for modelling the motion of clusters of cells moving through a viscous fluid in response to a known chemical signal using a boundary integral formulation of the governing equations rather than the more usual differential equation formulation. The numerical results presented in this paper show that the boundary integral method can be used to simulate the motion of cell clusters through the fluid. The results of the simulations are compared to some experimental observations of cell and cluster motion.</description><subject>Animals</subject><subject>Boundary integral method</subject><subject>Cell Aggregation</subject><subject>Cells</subject><subject>Chemotaxis</subject><subject>Chemotaxis - physiology</subject><subject>Clusters</subject><subject>Computer Simulation</subject><subject>Culture Media</subject><subject>Differential equations</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Integrals</subject><subject>Mathematical Concepts</subject><subject>Mathematical modelling</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Organic chemistry</subject><subject>Signal processing</subject><subject>Stokes flow</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDFP3TAUha2qCB6UH9ClstSlS9J749hJxFQhCkggFpgtx3bAT0lM7QSJf99LHzB0YLJlfefo-GPsK0KJgOrntpz6XFaAbQldCYif2AbbpisEivoz2wBUspBS1QfsMOctADaIap8dCKhU0wi1Yfo6Oj-OYb7ny4PnU1xCnHkcuB3XvPiU_92JyDzM3PCnkG1cMx_GNTi-5rdgH9fZmfRM1OLvkxn55JeH6L6wvcGM2R-_nkfs7vfZ7elFcXVzfnn666qwolFLYZRwZqhtJ5re9gKc6pVtB2vbzghr-kFJWykgqHICQdZStggtvYjWSQ_iiP3Y9T6m-Gf1edETLaXdZva0V1eIteoqKWpCv_-HbuOaZlpHlJKgRK2QKNxRNsWckx_0YwoT_VAj6Bf7eqvJvn6xr6HTZJ8y316b137y7j3xppuAkx3gScVT8ElnG_xsvQvJ20W7GD6o_ws_4JTO</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Harris, Paul J.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7SN</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method</title><author>Harris, Paul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a63daf4c937bcb30d6b6c8fcc89a3cabf65c2603da2d3105455810860338d5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Boundary integral method</topic><topic>Cell Aggregation</topic><topic>Cells</topic><topic>Chemotaxis</topic><topic>Chemotaxis - physiology</topic><topic>Clusters</topic><topic>Computer Simulation</topic><topic>Culture Media</topic><topic>Differential equations</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Integrals</topic><topic>Mathematical Concepts</topic><topic>Mathematical modelling</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Organic chemistry</topic><topic>Signal processing</topic><topic>Stokes flow</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Paul J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Paul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2018-12</date><risdate>2018</risdate><volume>306</volume><spage>145</spage><epage>151</epage><pages>145-151</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•This paper uses the boundary integral method to model the motion of a cell through a viscous fluid.•The model can be used to simulate chemotaxis.•The results of the calculations are compared to some experimental data.
In experiments clusters of cells are often observed to move in response to a chemical signal which is present in the fluid surrounding the cells. This process is known as chemotaxis. This paper presents a method for modelling the motion of clusters of cells moving through a viscous fluid in response to a known chemical signal using a boundary integral formulation of the governing equations rather than the more usual differential equation formulation. The numerical results presented in this paper show that the boundary integral method can be used to simulate the motion of cell clusters through the fluid. The results of the simulations are compared to some experimental observations of cell and cluster motion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30267736</pmid><doi>10.1016/j.mbs.2018.09.011</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2018-12, Vol.306, p.145-151 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_proquest_miscellaneous_2114692534 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Animals Boundary integral method Cell Aggregation Cells Chemotaxis Chemotaxis - physiology Clusters Computer Simulation Culture Media Differential equations Humans Hydrodynamics Integrals Mathematical Concepts Mathematical modelling Mathematical models Models, Biological Organic chemistry Signal processing Stokes flow Viscosity Viscous fluids |
title | Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20motion%20of%20clusters%20of%20cells%20in%20a%20viscous%20fluid%20using%20the%20boundary%20integral%20method&rft.jtitle=Mathematical%20biosciences&rft.au=Harris,%20Paul%20J.&rft.date=2018-12&rft.volume=306&rft.spage=145&rft.epage=151&rft.pages=145-151&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2018.09.011&rft_dat=%3Cproquest_cross%3E2114692534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165063461&rft_id=info:pmid/30267736&rft_els_id=S0025556417306028&rfr_iscdi=true |