Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix
Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched c...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-11, Vol.90 (21), p.12592-12600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12600 |
---|---|
container_issue | 21 |
container_start_page | 12592 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Rzagalinski, Ignacy Kovačević, Borislav Hainz, Nadine Meier, Carola Tschernig, Thomas Volmer, Dietrich A |
description | Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections. |
doi_str_mv | 10.1021/acs.analchem.8b02740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2114690276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132228947</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaLZJ_0Epgl568XY0lvxxDJumWdgkhE3OZmzLGwXb2kpym_331bKbHHroaWB43ndgHsY-C5gLQPGdGj-nkfrmSQ_zogbMJbxjM6EQkqwo8D2bAUCaYA5wyj56_wwgBIjsAztNATPIEGZsfLB_yLX82myetONrPXoTzG8TdtyM_H6iMZhAcaP5zcXqcsmXA23MuOE35D1fb3UTnB10cDtuO764XfNLN208f_R7iPitHbe2Jxf54MzLOTvpqPf603GescerHw-L62R193O5uFglpFCFpNUdqVKCVlR2AkXT6kzlAooCcgUqR1XING87Ucu2LVCKTBLJskYshW7aOj1j3w69W2d_TdqHajC-0X1Po7aTr1AImZXxZ1lEv_6DPtvJxcfuqRQRi1LmkZIHqnHWe6e7auvMQG5XCaj2Pqroo3r1UR19xNiXY_lUD7p9C70KiAAcgH387fB_O_8Cyh2Yqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228947</pqid></control><display><type>article</type><title>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</title><source>ACS Publications</source><creator>Rzagalinski, Ignacy ; Kovačević, Borislav ; Hainz, Nadine ; Meier, Carola ; Tschernig, Thomas ; Volmer, Dietrich A</creator><creatorcontrib>Rzagalinski, Ignacy ; Kovačević, Borislav ; Hainz, Nadine ; Meier, Carola ; Tschernig, Thomas ; Volmer, Dietrich A</creatorcontrib><description>Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b02740</identifier><identifier>PMID: 30260620</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Brain ; Calibration ; Central nervous system ; Chemistry ; Computational neuroscience ; Cyclotron resonance ; Drugs ; Electron transfer ; Fourier transforms ; Imaging ; Ionization ; Lipophilic ; Low molecular weights ; Malononitrile ; Mass spectrometry ; Mass spectroscopy ; Mathematical analysis ; Matrix ; Matrix methods ; Molecular weight ; Neuroimaging ; Protons ; Sensitivity ; Spatial analysis ; Spectroscopy ; Xylazine</subject><ispartof>Analytical chemistry (Washington), 2018-11, Vol.90 (21), p.12592-12600</ispartof><rights>Copyright American Chemical Society Nov 6, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</citedby><cites>FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</cites><orcidid>0000-0003-2820-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b02740$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b02740$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30260620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rzagalinski, Ignacy</creatorcontrib><creatorcontrib>Kovačević, Borislav</creatorcontrib><creatorcontrib>Hainz, Nadine</creatorcontrib><creatorcontrib>Meier, Carola</creatorcontrib><creatorcontrib>Tschernig, Thomas</creatorcontrib><creatorcontrib>Volmer, Dietrich A</creatorcontrib><title>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.</description><subject>Brain</subject><subject>Calibration</subject><subject>Central nervous system</subject><subject>Chemistry</subject><subject>Computational neuroscience</subject><subject>Cyclotron resonance</subject><subject>Drugs</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Imaging</subject><subject>Ionization</subject><subject>Lipophilic</subject><subject>Low molecular weights</subject><subject>Malononitrile</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Molecular weight</subject><subject>Neuroimaging</subject><subject>Protons</subject><subject>Sensitivity</subject><subject>Spatial analysis</subject><subject>Spectroscopy</subject><subject>Xylazine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpaLZJ_0Epgl568XY0lvxxDJumWdgkhE3OZmzLGwXb2kpym_331bKbHHroaWB43ndgHsY-C5gLQPGdGj-nkfrmSQ_zogbMJbxjM6EQkqwo8D2bAUCaYA5wyj56_wwgBIjsAztNATPIEGZsfLB_yLX82myetONrPXoTzG8TdtyM_H6iMZhAcaP5zcXqcsmXA23MuOE35D1fb3UTnB10cDtuO764XfNLN208f_R7iPitHbe2Jxf54MzLOTvpqPf603GescerHw-L62R193O5uFglpFCFpNUdqVKCVlR2AkXT6kzlAooCcgUqR1XING87Ucu2LVCKTBLJskYshW7aOj1j3w69W2d_TdqHajC-0X1Po7aTr1AImZXxZ1lEv_6DPtvJxcfuqRQRi1LmkZIHqnHWe6e7auvMQG5XCaj2Pqroo3r1UR19xNiXY_lUD7p9C70KiAAcgH387fB_O_8Cyh2Yqg</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Rzagalinski, Ignacy</creator><creator>Kovačević, Borislav</creator><creator>Hainz, Nadine</creator><creator>Meier, Carola</creator><creator>Tschernig, Thomas</creator><creator>Volmer, Dietrich A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2820-1480</orcidid></search><sort><creationdate>20181106</creationdate><title>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</title><author>Rzagalinski, Ignacy ; Kovačević, Borislav ; Hainz, Nadine ; Meier, Carola ; Tschernig, Thomas ; Volmer, Dietrich A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain</topic><topic>Calibration</topic><topic>Central nervous system</topic><topic>Chemistry</topic><topic>Computational neuroscience</topic><topic>Cyclotron resonance</topic><topic>Drugs</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Imaging</topic><topic>Ionization</topic><topic>Lipophilic</topic><topic>Low molecular weights</topic><topic>Malononitrile</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Molecular weight</topic><topic>Neuroimaging</topic><topic>Protons</topic><topic>Sensitivity</topic><topic>Spatial analysis</topic><topic>Spectroscopy</topic><topic>Xylazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rzagalinski, Ignacy</creatorcontrib><creatorcontrib>Kovačević, Borislav</creatorcontrib><creatorcontrib>Hainz, Nadine</creatorcontrib><creatorcontrib>Meier, Carola</creatorcontrib><creatorcontrib>Tschernig, Thomas</creatorcontrib><creatorcontrib>Volmer, Dietrich A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rzagalinski, Ignacy</au><au>Kovačević, Borislav</au><au>Hainz, Nadine</au><au>Meier, Carola</au><au>Tschernig, Thomas</au><au>Volmer, Dietrich A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>90</volume><issue>21</issue><spage>12592</spage><epage>12600</epage><pages>12592-12600</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30260620</pmid><doi>10.1021/acs.analchem.8b02740</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2820-1480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-11, Vol.90 (21), p.12592-12600 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2114690276 |
source | ACS Publications |
subjects | Brain Calibration Central nervous system Chemistry Computational neuroscience Cyclotron resonance Drugs Electron transfer Fourier transforms Imaging Ionization Lipophilic Low molecular weights Malononitrile Mass spectrometry Mass spectroscopy Mathematical analysis Matrix Matrix methods Molecular weight Neuroimaging Protons Sensitivity Spatial analysis Spectroscopy Xylazine |
title | Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Higher%20Sensitivity%20in%20Quantitative%20MALDI%20Imaging%20Mass%20Spectrometry%20of%20CNS%20Drugs%20Using%20a%20Nonpolar%20Matrix&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Rzagalinski,%20Ignacy&rft.date=2018-11-06&rft.volume=90&rft.issue=21&rft.spage=12592&rft.epage=12600&rft.pages=12592-12600&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b02740&rft_dat=%3Cproquest_cross%3E2132228947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228947&rft_id=info:pmid/30260620&rfr_iscdi=true |