Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix

Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-11, Vol.90 (21), p.12592-12600
Hauptverfasser: Rzagalinski, Ignacy, Kovačević, Borislav, Hainz, Nadine, Meier, Carola, Tschernig, Thomas, Volmer, Dietrich A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12600
container_issue 21
container_start_page 12592
container_title Analytical chemistry (Washington)
container_volume 90
creator Rzagalinski, Ignacy
Kovačević, Borislav
Hainz, Nadine
Meier, Carola
Tschernig, Thomas
Volmer, Dietrich A
description Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butyl­phenyl)-2-methyl­prop-2-enyl­idene]­malono­nitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.
doi_str_mv 10.1021/acs.analchem.8b02740
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2114690276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132228947</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaLZJ_0Epgl568XY0lvxxDJumWdgkhE3OZmzLGwXb2kpym_331bKbHHroaWB43ndgHsY-C5gLQPGdGj-nkfrmSQ_zogbMJbxjM6EQkqwo8D2bAUCaYA5wyj56_wwgBIjsAztNATPIEGZsfLB_yLX82myetONrPXoTzG8TdtyM_H6iMZhAcaP5zcXqcsmXA23MuOE35D1fb3UTnB10cDtuO764XfNLN208f_R7iPitHbe2Jxf54MzLOTvpqPf603GescerHw-L62R193O5uFglpFCFpNUdqVKCVlR2AkXT6kzlAooCcgUqR1XING87Ucu2LVCKTBLJskYshW7aOj1j3w69W2d_TdqHajC-0X1Po7aTr1AImZXxZ1lEv_6DPtvJxcfuqRQRi1LmkZIHqnHWe6e7auvMQG5XCaj2Pqroo3r1UR19xNiXY_lUD7p9C70KiAAcgH387fB_O_8Cyh2Yqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228947</pqid></control><display><type>article</type><title>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</title><source>ACS Publications</source><creator>Rzagalinski, Ignacy ; Kovačević, Borislav ; Hainz, Nadine ; Meier, Carola ; Tschernig, Thomas ; Volmer, Dietrich A</creator><creatorcontrib>Rzagalinski, Ignacy ; Kovačević, Borislav ; Hainz, Nadine ; Meier, Carola ; Tschernig, Thomas ; Volmer, Dietrich A</creatorcontrib><description>Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butyl­phenyl)-2-methyl­prop-2-enyl­idene]­malono­nitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and &gt;440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b02740</identifier><identifier>PMID: 30260620</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Brain ; Calibration ; Central nervous system ; Chemistry ; Computational neuroscience ; Cyclotron resonance ; Drugs ; Electron transfer ; Fourier transforms ; Imaging ; Ionization ; Lipophilic ; Low molecular weights ; Malononitrile ; Mass spectrometry ; Mass spectroscopy ; Mathematical analysis ; Matrix ; Matrix methods ; Molecular weight ; Neuroimaging ; Protons ; Sensitivity ; Spatial analysis ; Spectroscopy ; Xylazine</subject><ispartof>Analytical chemistry (Washington), 2018-11, Vol.90 (21), p.12592-12600</ispartof><rights>Copyright American Chemical Society Nov 6, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</citedby><cites>FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</cites><orcidid>0000-0003-2820-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b02740$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b02740$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30260620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rzagalinski, Ignacy</creatorcontrib><creatorcontrib>Kovačević, Borislav</creatorcontrib><creatorcontrib>Hainz, Nadine</creatorcontrib><creatorcontrib>Meier, Carola</creatorcontrib><creatorcontrib>Tschernig, Thomas</creatorcontrib><creatorcontrib>Volmer, Dietrich A</creatorcontrib><title>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butyl­phenyl)-2-methyl­prop-2-enyl­idene]­malono­nitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and &gt;440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.</description><subject>Brain</subject><subject>Calibration</subject><subject>Central nervous system</subject><subject>Chemistry</subject><subject>Computational neuroscience</subject><subject>Cyclotron resonance</subject><subject>Drugs</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Imaging</subject><subject>Ionization</subject><subject>Lipophilic</subject><subject>Low molecular weights</subject><subject>Malononitrile</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Molecular weight</subject><subject>Neuroimaging</subject><subject>Protons</subject><subject>Sensitivity</subject><subject>Spatial analysis</subject><subject>Spectroscopy</subject><subject>Xylazine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpaLZJ_0Epgl568XY0lvxxDJumWdgkhE3OZmzLGwXb2kpym_331bKbHHroaWB43ndgHsY-C5gLQPGdGj-nkfrmSQ_zogbMJbxjM6EQkqwo8D2bAUCaYA5wyj56_wwgBIjsAztNATPIEGZsfLB_yLX82myetONrPXoTzG8TdtyM_H6iMZhAcaP5zcXqcsmXA23MuOE35D1fb3UTnB10cDtuO764XfNLN208f_R7iPitHbe2Jxf54MzLOTvpqPf603GescerHw-L62R193O5uFglpFCFpNUdqVKCVlR2AkXT6kzlAooCcgUqR1XING87Ucu2LVCKTBLJskYshW7aOj1j3w69W2d_TdqHajC-0X1Po7aTr1AImZXxZ1lEv_6DPtvJxcfuqRQRi1LmkZIHqnHWe6e7auvMQG5XCaj2Pqroo3r1UR19xNiXY_lUD7p9C70KiAAcgH387fB_O_8Cyh2Yqg</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Rzagalinski, Ignacy</creator><creator>Kovačević, Borislav</creator><creator>Hainz, Nadine</creator><creator>Meier, Carola</creator><creator>Tschernig, Thomas</creator><creator>Volmer, Dietrich A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2820-1480</orcidid></search><sort><creationdate>20181106</creationdate><title>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</title><author>Rzagalinski, Ignacy ; Kovačević, Borislav ; Hainz, Nadine ; Meier, Carola ; Tschernig, Thomas ; Volmer, Dietrich A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-defa5940e5a9f121cde6571088075057258437df1b4dd824164aa49b2291ecdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain</topic><topic>Calibration</topic><topic>Central nervous system</topic><topic>Chemistry</topic><topic>Computational neuroscience</topic><topic>Cyclotron resonance</topic><topic>Drugs</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Imaging</topic><topic>Ionization</topic><topic>Lipophilic</topic><topic>Low molecular weights</topic><topic>Malononitrile</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Molecular weight</topic><topic>Neuroimaging</topic><topic>Protons</topic><topic>Sensitivity</topic><topic>Spatial analysis</topic><topic>Spectroscopy</topic><topic>Xylazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rzagalinski, Ignacy</creatorcontrib><creatorcontrib>Kovačević, Borislav</creatorcontrib><creatorcontrib>Hainz, Nadine</creatorcontrib><creatorcontrib>Meier, Carola</creatorcontrib><creatorcontrib>Tschernig, Thomas</creatorcontrib><creatorcontrib>Volmer, Dietrich A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rzagalinski, Ignacy</au><au>Kovačević, Borislav</au><au>Hainz, Nadine</au><au>Meier, Carola</au><au>Tschernig, Thomas</au><au>Volmer, Dietrich A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>90</volume><issue>21</issue><spage>12592</spage><epage>12600</epage><pages>12592-12600</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2E)-3-(4-tert-butyl­phenyl)-2-methyl­prop-2-enyl­idene]­malono­nitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and &gt;440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30260620</pmid><doi>10.1021/acs.analchem.8b02740</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2820-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2018-11, Vol.90 (21), p.12592-12600
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2114690276
source ACS Publications
subjects Brain
Calibration
Central nervous system
Chemistry
Computational neuroscience
Cyclotron resonance
Drugs
Electron transfer
Fourier transforms
Imaging
Ionization
Lipophilic
Low molecular weights
Malononitrile
Mass spectrometry
Mass spectroscopy
Mathematical analysis
Matrix
Matrix methods
Molecular weight
Neuroimaging
Protons
Sensitivity
Spatial analysis
Spectroscopy
Xylazine
title Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Higher%20Sensitivity%20in%20Quantitative%20MALDI%20Imaging%20Mass%20Spectrometry%20of%20CNS%20Drugs%20Using%20a%20Nonpolar%20Matrix&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Rzagalinski,%20Ignacy&rft.date=2018-11-06&rft.volume=90&rft.issue=21&rft.spage=12592&rft.epage=12600&rft.pages=12592-12600&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b02740&rft_dat=%3Cproquest_cross%3E2132228947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228947&rft_id=info:pmid/30260620&rfr_iscdi=true