A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses

The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discrimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied psychological measurement 2000-03, Vol.24 (1), p.3-32
Hauptverfasser: Roberts, James S., Donoghue, John R., Laughlin, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 3
container_title Applied psychological measurement
container_volume 24
creator Roberts, James S.
Donoghue, John R.
Laughlin, James E.
description The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.
doi_str_mv 10.1177/01466216000241001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21145823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ605896</ericid><sage_id>10.1177_01466216000241001</sage_id><sourcerecordid>21145823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e09a1c5d7a3302b641f56151a113b874be923cb50e2417b6108c826f007d35983</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gOAiuHCXOncm88iylForFUVatyGPm5qSZOpMuui_d0KlguLqXjjfuY9DyDXQEYBS9xQiKRlISimLgFI4IQMQgoU8itUpGfR62APn5MK5jce4jMWAvI-DGbZo0zqYd9gEb-i2pnUYLD_Q2H3wbAqsg9LYYNWWpi6qdu27qqgabF1lWu97NfW-M43ZuaPbXZKzMq0dXn3XIVk9TJeTx3DxMptPxoswj5jqQqRxCrkoVMo5ZZmMoBQSBKQAPNMqyjBmPM8ERf-UyiRQnWsmS0pVwUWs-ZDcHeZurfncoeuSpnI51nXaoj8oYQCR0Ix78PYXuDE768_vGc19hLqH4ADl1jhnsUy2tmpSu0-AJn3MyZ-Yvefm4EFb5Ud--iSp0LH08uggu3SNPzv_n_cFf5KD-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218317783</pqid></control><display><type>article</type><title>A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses</title><source>SAGE Complete A-Z List</source><creator>Roberts, James S. ; Donoghue, John R. ; Laughlin, James E.</creator><creatorcontrib>Roberts, James S. ; Donoghue, John R. ; Laughlin, James E.</creatorcontrib><description>The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.</description><identifier>ISSN: 0146-6216</identifier><identifier>EISSN: 1552-3497</identifier><identifier>DOI: 10.1177/01466216000241001</identifier><identifier>CODEN: APMEDC</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Attitude Measures ; Equations (Mathematics) ; Graded Response Model ; Item Response Theory ; Polytomous Items ; Responses ; Unfolding Technique</subject><ispartof>Applied psychological measurement, 2000-03, Vol.24 (1), p.3-32</ispartof><rights>Copyright SAGE PUBLICATIONS, INC. Mar 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e09a1c5d7a3302b641f56151a113b874be923cb50e2417b6108c826f007d35983</citedby><cites>FETCH-LOGICAL-c427t-e09a1c5d7a3302b641f56151a113b874be923cb50e2417b6108c826f007d35983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01466216000241001$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01466216000241001$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ605896$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Roberts, James S.</creatorcontrib><creatorcontrib>Donoghue, John R.</creatorcontrib><creatorcontrib>Laughlin, James E.</creatorcontrib><title>A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses</title><title>Applied psychological measurement</title><description>The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.</description><subject>Attitude Measures</subject><subject>Equations (Mathematics)</subject><subject>Graded Response Model</subject><subject>Item Response Theory</subject><subject>Polytomous Items</subject><subject>Responses</subject><subject>Unfolding Technique</subject><issn>0146-6216</issn><issn>1552-3497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gOAiuHCXOncm88iylForFUVatyGPm5qSZOpMuui_d0KlguLqXjjfuY9DyDXQEYBS9xQiKRlISimLgFI4IQMQgoU8itUpGfR62APn5MK5jce4jMWAvI-DGbZo0zqYd9gEb-i2pnUYLD_Q2H3wbAqsg9LYYNWWpi6qdu27qqgabF1lWu97NfW-M43ZuaPbXZKzMq0dXn3XIVk9TJeTx3DxMptPxoswj5jqQqRxCrkoVMo5ZZmMoBQSBKQAPNMqyjBmPM8ERf-UyiRQnWsmS0pVwUWs-ZDcHeZurfncoeuSpnI51nXaoj8oYQCR0Ix78PYXuDE768_vGc19hLqH4ADl1jhnsUy2tmpSu0-AJn3MyZ-Yvefm4EFb5Ud--iSp0LH08uggu3SNPzv_n_cFf5KD-w</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Roberts, James S.</creator><creator>Donoghue, John R.</creator><creator>Laughlin, James E.</creator><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20000301</creationdate><title>A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses</title><author>Roberts, James S. ; Donoghue, John R. ; Laughlin, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e09a1c5d7a3302b641f56151a113b874be923cb50e2417b6108c826f007d35983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Attitude Measures</topic><topic>Equations (Mathematics)</topic><topic>Graded Response Model</topic><topic>Item Response Theory</topic><topic>Polytomous Items</topic><topic>Responses</topic><topic>Unfolding Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, James S.</creatorcontrib><creatorcontrib>Donoghue, John R.</creatorcontrib><creatorcontrib>Laughlin, James E.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Applied psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, James S.</au><au>Donoghue, John R.</au><au>Laughlin, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ605896</ericid><atitle>A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses</atitle><jtitle>Applied psychological measurement</jtitle><date>2000-03-01</date><risdate>2000</risdate><volume>24</volume><issue>1</issue><spage>3</spage><epage>32</epage><pages>3-32</pages><issn>0146-6216</issn><eissn>1552-3497</eissn><coden>APMEDC</coden><abstract>The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/01466216000241001</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-6216
ispartof Applied psychological measurement, 2000-03, Vol.24 (1), p.3-32
issn 0146-6216
1552-3497
language eng
recordid cdi_proquest_miscellaneous_21145823
source SAGE Complete A-Z List
subjects Attitude Measures
Equations (Mathematics)
Graded Response Model
Item Response Theory
Polytomous Items
Responses
Unfolding Technique
title A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Item%20Response%20Theory%20Model%20for%20Unfolding%20Unidimensional%20Polytomous%20Responses&rft.jtitle=Applied%20psychological%20measurement&rft.au=Roberts,%20James%20S.&rft.date=2000-03-01&rft.volume=24&rft.issue=1&rft.spage=3&rft.epage=32&rft.pages=3-32&rft.issn=0146-6216&rft.eissn=1552-3497&rft.coden=APMEDC&rft_id=info:doi/10.1177/01466216000241001&rft_dat=%3Cproquest_cross%3E21145823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218317783&rft_id=info:pmid/&rft_ericid=EJ605896&rft_sage_id=10.1177_01466216000241001&rfr_iscdi=true