Cumulative Damage Survival Models for the Randomized Complete Block Design
A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2003-03, Vol.45 (2), p.153-164 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 2 |
container_start_page | 153 |
container_title | Biometrical journal |
container_volume | 45 |
creator | Gregory, Gavin G. |
description | A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model. |
doi_str_mv | 10.1002/bimj.200390002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21132185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21080634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-de4762d6a42cdc8da292216ad32eac3ea5700e57ce489039924430e0b7360df43</originalsourceid><addsrcrecordid>eNqNkE1PGzEQhi1EJVLaa8--tLdNxx7vFzeStCmID6kf4mgZe5YavNlg76alv74bBVH1BKfRSM_7jOZl7J2AqQCQH699ezuVAFjDuO6xicilyBRgsc8mgBIzrFR5wF6ndDsSNSg5YafzoR2C6f2G-MK05ob4tyFu_MYEft45Cok3XeT9T-Jfzcp1rf9Djs-7dh2oJz4Lnb3jC0r-ZvWGvWpMSPT2cR6yH58_fZ9_yc4ulyfz47PMYokyc6TKQrrCKGmdrZyRtZSiMA4lGYtk8hKA8tKSqurxmVoqhUBwXWIBrlF4yD7svOvY3Q-Uet36ZCkEs6JuSFoKgVJU-QtAqKDArXG6A23sUorU6HX0rYkPWoDedqu33eqnbsfA-0ezSdaEJpqV9elfShVYj2-N3NGO--UDPTxj1bOT89P_jmS7sE89_X4Km3inixLLXF9dLPXVMgeYLS70Ev8CY-uYqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21080634</pqid></control><display><type>article</type><title>Cumulative Damage Survival Models for the Randomized Complete Block Design</title><source>Wiley Online Library All Journals</source><creator>Gregory, Gavin G.</creator><creatorcontrib>Gregory, Gavin G.</creatorcontrib><description>A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.200390002</identifier><identifier>CODEN: BIJODN</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Applications ; Biological and medical sciences ; cumulative damage process ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; gamma frailty model ; General aspects ; Inference from stochastic processes; time series analysis ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Medical sciences ; Poisson-stopped-sum distribution ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics</subject><ispartof>Biometrical journal, 2003-03, Vol.45 (2), p.153-164</ispartof><rights>2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3732-de4762d6a42cdc8da292216ad32eac3ea5700e57ce489039924430e0b7360df43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.200390002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14639292$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gregory, Gavin G.</creatorcontrib><title>Cumulative Damage Survival Models for the Randomized Complete Block Design</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.</description><subject>Applications</subject><subject>Biological and medical sciences</subject><subject>cumulative damage process</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma frailty model</subject><subject>General aspects</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Medical sciences</subject><subject>Poisson-stopped-sum distribution</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PGzEQhi1EJVLaa8--tLdNxx7vFzeStCmID6kf4mgZe5YavNlg76alv74bBVH1BKfRSM_7jOZl7J2AqQCQH699ezuVAFjDuO6xicilyBRgsc8mgBIzrFR5wF6ndDsSNSg5YafzoR2C6f2G-MK05ob4tyFu_MYEft45Cok3XeT9T-Jfzcp1rf9Djs-7dh2oJz4Lnb3jC0r-ZvWGvWpMSPT2cR6yH58_fZ9_yc4ulyfz47PMYokyc6TKQrrCKGmdrZyRtZSiMA4lGYtk8hKA8tKSqurxmVoqhUBwXWIBrlF4yD7svOvY3Q-Uet36ZCkEs6JuSFoKgVJU-QtAqKDArXG6A23sUorU6HX0rYkPWoDedqu33eqnbsfA-0ezSdaEJpqV9elfShVYj2-N3NGO--UDPTxj1bOT89P_jmS7sE89_X4Km3inixLLXF9dLPXVMgeYLS70Ev8CY-uYqw</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Gregory, Gavin G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200303</creationdate><title>Cumulative Damage Survival Models for the Randomized Complete Block Design</title><author>Gregory, Gavin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-de4762d6a42cdc8da292216ad32eac3ea5700e57ce489039924430e0b7360df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applications</topic><topic>Biological and medical sciences</topic><topic>cumulative damage process</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma frailty model</topic><topic>General aspects</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Medical sciences</topic><topic>Poisson-stopped-sum distribution</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gregory, Gavin G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregory, Gavin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative Damage Survival Models for the Randomized Complete Block Design</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2003-03</date><risdate>2003</risdate><volume>45</volume><issue>2</issue><spage>153</spage><epage>164</epage><pages>153-164</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><coden>BIJODN</coden><abstract>A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/bimj.200390002</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2003-03, Vol.45 (2), p.153-164 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_21132185 |
source | Wiley Online Library All Journals |
subjects | Applications Biological and medical sciences cumulative damage process Exact sciences and technology Fundamental and applied biological sciences. Psychology gamma frailty model General aspects Inference from stochastic processes time series analysis Mathematics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Medical sciences Poisson-stopped-sum distribution Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Statistics |
title | Cumulative Damage Survival Models for the Randomized Complete Block Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20Damage%20Survival%20Models%20for%20the%20Randomized%20Complete%20Block%20Design&rft.jtitle=Biometrical%20journal&rft.au=Gregory,%20Gavin%20G.&rft.date=2003-03&rft.volume=45&rft.issue=2&rft.spage=153&rft.epage=164&rft.pages=153-164&rft.issn=0323-3847&rft.eissn=1521-4036&rft.coden=BIJODN&rft_id=info:doi/10.1002/bimj.200390002&rft_dat=%3Cproquest_cross%3E21080634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21080634&rft_id=info:pmid/&rfr_iscdi=true |