Cumulative Damage Survival Models for the Randomized Complete Block Design

A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2003-03, Vol.45 (2), p.153-164
1. Verfasser: Gregory, Gavin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 2
container_start_page 153
container_title Biometrical journal
container_volume 45
creator Gregory, Gavin G.
description A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.
doi_str_mv 10.1002/bimj.200390002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21132185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21080634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-de4762d6a42cdc8da292216ad32eac3ea5700e57ce489039924430e0b7360df43</originalsourceid><addsrcrecordid>eNqNkE1PGzEQhi1EJVLaa8--tLdNxx7vFzeStCmID6kf4mgZe5YavNlg76alv74bBVH1BKfRSM_7jOZl7J2AqQCQH699ezuVAFjDuO6xicilyBRgsc8mgBIzrFR5wF6ndDsSNSg5YafzoR2C6f2G-MK05ob4tyFu_MYEft45Cok3XeT9T-Jfzcp1rf9Djs-7dh2oJz4Lnb3jC0r-ZvWGvWpMSPT2cR6yH58_fZ9_yc4ulyfz47PMYokyc6TKQrrCKGmdrZyRtZSiMA4lGYtk8hKA8tKSqurxmVoqhUBwXWIBrlF4yD7svOvY3Q-Uet36ZCkEs6JuSFoKgVJU-QtAqKDArXG6A23sUorU6HX0rYkPWoDedqu33eqnbsfA-0ezSdaEJpqV9elfShVYj2-N3NGO--UDPTxj1bOT89P_jmS7sE89_X4Km3inixLLXF9dLPXVMgeYLS70Ev8CY-uYqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21080634</pqid></control><display><type>article</type><title>Cumulative Damage Survival Models for the Randomized Complete Block Design</title><source>Wiley Online Library All Journals</source><creator>Gregory, Gavin G.</creator><creatorcontrib>Gregory, Gavin G.</creatorcontrib><description>A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.200390002</identifier><identifier>CODEN: BIJODN</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Applications ; Biological and medical sciences ; cumulative damage process ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; gamma frailty model ; General aspects ; Inference from stochastic processes; time series analysis ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Medical sciences ; Poisson-stopped-sum distribution ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics</subject><ispartof>Biometrical journal, 2003-03, Vol.45 (2), p.153-164</ispartof><rights>2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3732-de4762d6a42cdc8da292216ad32eac3ea5700e57ce489039924430e0b7360df43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.200390002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14639292$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gregory, Gavin G.</creatorcontrib><title>Cumulative Damage Survival Models for the Randomized Complete Block Design</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.</description><subject>Applications</subject><subject>Biological and medical sciences</subject><subject>cumulative damage process</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma frailty model</subject><subject>General aspects</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Medical sciences</subject><subject>Poisson-stopped-sum distribution</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PGzEQhi1EJVLaa8--tLdNxx7vFzeStCmID6kf4mgZe5YavNlg76alv74bBVH1BKfRSM_7jOZl7J2AqQCQH699ezuVAFjDuO6xicilyBRgsc8mgBIzrFR5wF6ndDsSNSg5YafzoR2C6f2G-MK05ob4tyFu_MYEft45Cok3XeT9T-Jfzcp1rf9Djs-7dh2oJz4Lnb3jC0r-ZvWGvWpMSPT2cR6yH58_fZ9_yc4ulyfz47PMYokyc6TKQrrCKGmdrZyRtZSiMA4lGYtk8hKA8tKSqurxmVoqhUBwXWIBrlF4yD7svOvY3Q-Uet36ZCkEs6JuSFoKgVJU-QtAqKDArXG6A23sUorU6HX0rYkPWoDedqu33eqnbsfA-0ezSdaEJpqV9elfShVYj2-N3NGO--UDPTxj1bOT89P_jmS7sE89_X4Km3inixLLXF9dLPXVMgeYLS70Ev8CY-uYqw</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Gregory, Gavin G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200303</creationdate><title>Cumulative Damage Survival Models for the Randomized Complete Block Design</title><author>Gregory, Gavin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-de4762d6a42cdc8da292216ad32eac3ea5700e57ce489039924430e0b7360df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applications</topic><topic>Biological and medical sciences</topic><topic>cumulative damage process</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma frailty model</topic><topic>General aspects</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Medical sciences</topic><topic>Poisson-stopped-sum distribution</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gregory, Gavin G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregory, Gavin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative Damage Survival Models for the Randomized Complete Block Design</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2003-03</date><risdate>2003</risdate><volume>45</volume><issue>2</issue><spage>153</spage><epage>164</epage><pages>153-164</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><coden>BIJODN</coden><abstract>A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of L – X(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/bimj.200390002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2003-03, Vol.45 (2), p.153-164
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_21132185
source Wiley Online Library All Journals
subjects Applications
Biological and medical sciences
cumulative damage process
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
gamma frailty model
General aspects
Inference from stochastic processes
time series analysis
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Medical sciences
Poisson-stopped-sum distribution
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistics
title Cumulative Damage Survival Models for the Randomized Complete Block Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20Damage%20Survival%20Models%20for%20the%20Randomized%20Complete%20Block%20Design&rft.jtitle=Biometrical%20journal&rft.au=Gregory,%20Gavin%20G.&rft.date=2003-03&rft.volume=45&rft.issue=2&rft.spage=153&rft.epage=164&rft.pages=153-164&rft.issn=0323-3847&rft.eissn=1521-4036&rft.coden=BIJODN&rft_id=info:doi/10.1002/bimj.200390002&rft_dat=%3Cproquest_cross%3E21080634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21080634&rft_id=info:pmid/&rfr_iscdi=true